
On Tracking Personalized Web Services Using Views

Zakaria Maamar
Zayed University, U.A.E

zakaria.maamar@zu.ac.ae

Djamal Benslimane, Chirine Ghedira, and Michael Mrissa
Université Claude Bernard Lyon 1, France

firstname.lastname@liris.cnrs.fr

Abstract

This paper presents a view-based approach for tracking
personalized Web services. Web services are subject to
personalization when there is a need to accommodate user
preferences during these Web services performance and de-
livery of this performance’s outcome. Preferences are of
multiple types such as when the execution of a Web service
should be initiated and where the outcome of this execution
should be returned. To guarantee that these preferences are
handled during Web services execution, a view offers the
opportunity of zooming into the specification that composes
Web services. As time advances, location changes, or con-
straint on the environment becomes satisfied, the deploy-
ment of a view over a specification progresses, featuring
the dynamic nature of tracking personalized Web services.
Keywords. Web services, Personalization, View, Tracking.

1 Introduction
Web services are among the technologies that help or-

ganizations connect their business processes to other peers’
processes. Web services-based Business-to-Business sce-
narios show the capacity of Web services to be composed
into composite services. Composition primarily addresses
the situation of a user’s request that cannot be satisfied by
any available Web service (called service in the rest of this
paper), whereas a composite service obtained by combining
available Web services might be used [2].

A composite service is always associated with a spec-
ification, which describes among others the list of com-
ponent Web services, the execution order of these com-
ponent Web services according to various dependencies,
and the corrective strategies for exception handling. People
(e.g., researchers, IT programmers) have adopted different
languages for specifying composition of Web services such
as BPEL and WSFL. The aim of these languages is to pro-
vide a high-level description of the composition process far
away from any implementation concerns.

The integration of user preferences into a Web service
composition permits Web services personalization. Some
users would like receiving answers to their personal re-
quests directly submitted to their personal email instead of
office’s email. Personalization depends on the features of

the environment in which the Web services are to be ex-
ecuted. These features can be about users, computing re-
sources, physical locations, etc. Sensing, gathering, and re-
fining the features and changes of an environment allows
defining what is known as context. Context is the infor-
mation that characterizes the interactions between humans,
applications, and the surrounding environment [4].

In this paper, the primary use of context is to adjust
the specification of a composite service according to the
features of the environment. For instance, knowing that
a user’s laptop is currently facing some low performance
problems should trigger the request of postponing the out-
come delivery of the service this user has initiated earlier.
Context-aware computing refers to the ability of a soft-
ware application to detect and respond to changes in its en-
vironment [10]. To be aware of which part of the spec-
ification of the composite service has to be adjusted be-
cause of the changes of the environment surrounding user,
an assessment of what-was-previously-expected vs. what-
is-effectively-happening is required. We refer to this part
of the specification of the composite service as view. The
assessment between the ”expected” and ”happening” en-
ables detecting the discrepancies so that corrective mea-
sures are taken. We define a view as a dynamic snap-
shot over a specification of a composite service according
to a certain context. It should be noted that what-was-
previously-expected reflects the preferences of users to-
wards the deployment of some Web services in terms of
execution time, execution location, etc., whereas what-is-
effectively-happening reflects the capacity of satisfying
the preferences of users according to what currently ex-
ists in terms of computing resources, communication net-
works, etc. In addition it will be shown in this paper that be-
sides the view that implements the context of user over the
specification of a composite service, two additional views
might be considered. The first view implements the context
of a Web service, and the second view implements the con-
text of a composite service. Embedding services whether
Web or composite with context-awareness mechanisms has
several advantages as Maamar et al. report in [7].

While much of the R&D on Web services to date have

focused on low-level standards for publishing, discovering,
and invoking Web services, respectively, it is deemed appro-
priate tracking personalized Web services so that user pref-
erences are properly handled. However, very little has been
achieved to date regarding this tracking due to several obsta-
cles current Web services do not act as active components
that can be embedded with context-awareness mechanisms,
existing specification approaches for Web services compo-
sition typically facilitate choreography only while neglect-
ing contexts and their impact on this choreography, and lack
of guidelines supporting the operations of Web services per-
sonalization and tracking. In this paper we propose the
use of views as a support means for first, tracking the ex-
ecution progress of personalized Web services and second,
deploying corrective measures in case of non-compliance
with the personalization requirements as users indicate for
these Web services. Our contributions are summarized as
follows: a clear definition of what a view means in the
context of Web services composition; mechanisms for as-
sessing the discrepancies between what-was-expected and
what-is-happening; and mechanisms for extracting and vi-
sualizing views over specifications of composite services.

Section 2 provides a scenario for motivating the adoption
of views. Section 3 discusses the rationale of views. Sec-
tion 4 details the view-based tracking of personalized Web
services. Section 5 presents the mathematical model of a
view. The implementation status of a view-based tracking
is discussed in Section 6. Prior to concluding in Section 8,
we present some related work in Section 7.

2 Motivating scenario

Our motivating scenario concerns Melissa, a tourist who
just landed in Dubai. Melissa plans using her PDA as a
tourist mobilebook instead of carrying brochures and book-
lets. Upon arrival to the airport she decides on downloading
some applications into her PDA as they are free-of-charges.
These applications constitute the front-ends of Web services
that concern tourism in Dubai.

Melissa picks sightseeing and shopping appli-
cations. Melissa is notified that these applications can be
composed according to a certain pattern, and she decides
on doing so. Melissa’s plans are to visit outdoor places in
the morning and go for shopping in the afternoon. The first
part of the plan is subject to weather forecasts as outdoor
activities are cancelled in case of hot weather. Melissa is
prompted among others to select some outdoor places, to
express her need for a guide during the visits, etc.

Once Melissa’s preferences are set, they are submit-
ted to appropriate Web services so that their processing
can now be initiated. With regard to the first activity,
sightseeing Web service checks with weather Web
service the forecasts for the five coming days. If there is
no warning of hot weather, the scheduling of the places

to visit begins by ensuring that these places are open for
public on these days, and transportation and guide are ar-
ranged. The logistics of Melissa’s rides is affected to
transportation Web service, which identifies for in-
stance the type of vehicle and the possibility that Melissa
commutes with other tourists heading towards the same
places. In case of hot-weather warning, sightseeing
Web service can suggest places (e.g., museums) where in-
door activities can take place. The same description applies
to the shopping activity, which consists of checking out the
running promotions in the malls that Melissa has selected.
If Melissa has included several malls during her shopping
plan, the distance between them is considered so that appro-
priate transportation is scheduled, too. It should be noted
that shopping’s starting time is coordinated with sightsee-
ing’s finishing time. Transportation Web service is
responsible for coordinating the timings among all the ac-
tivities. Once the specification of Melissa’s plan is finalized,
a light version of this specification is returned to her PDA
for records. By light version we mean the following details:
list of participating Web services, their execution chronol-
ogy, and approximate duration of the planned activities such
as shopping. Extra details can be added to the light version
of a specification if needed.

The day after her arrival, Melissa is given a ride to an
historical site. Due to an unexpected traffic jam, her PDA
(in fact a software component residing in the PDA and act-
ing on Melissa’s behalf [3]) compares her current location
to the location in which she is supposed to be (i.e., historical
site) at that time. Noticing that Melissa is not in the agreed
location according to the previously-defined specification,
her PDA takes actions by notifying sightseeing and
transportation Web services so that corrective mea-
sures are performed, e.g., informing the guide waiting for
Melissa about the delay.

3 Why using views?

Various reasons motivate integrating views into the
tracking of personalized Web services. First, the view
mechanism provides a powerful and flexible security ap-
proach by hiding the complete specification of a composite
service from users and the process responsible for adjusting
this specification. Only the relevant parts of a specification,
which are subject to adjustment, are highlighted. Second,
the view mechanism allows identifying the component Web
services of a specification in a way that is customized to
the context of user. This customization can also include the
contexts of Web services and composite services. Third,
because the same specification of a composite service is of-
fered to several users for triggering, multiple views over
this specification are obtained at different levels of granu-
larity ranging from the dependency between Web services
and the execution preferences associated with Web services

to the corrective measures that Web services adopt.

4 View’s foundations

Before we discuss the foundations on which the view
concept is built upon, we first overview state and service
chart diagrams. A specification of Melissa scenario is also
included in this overview. In our research on views we adopt
these diagrams for the specification of composite services.

4.1 State/Service chart diagram

A state chart diagram is a graphical representation of a
state machine that visualizes how and under what circum-
stances a modelled element changes its states. Furthermore,
a state chart diagram shows which activities are executed as
a result of the occurrence of events.

A service chart diagram is a means for modelling and
specifying the component Web services of a composite ser-
vice [6]. It enhances a state chart diagram, putting the
emphasis on the context surrounding the execution of a
Web service rather than only the states that a Web ser-
vice takes (Fig. 1). To this end, the states of a service are
wrapped into five perspectives namely: state, flow, business,
information, and performance.

Data from
previous services

Data to
next services

Performance
type

2

3

Previous services Next servicesBusiness1

Web service
Layers

in

State 1 State 2
B

State j
E

State 3 outLocation Time

Figure 1. Service chart diagram of a Web service

When it comes to personalizing Web services, users indi-
cate when and where they would like having these Web ser-
vices performed according to particular periods of time and
particular locations (additional types of preferences could
be added). Users may also indicate when and where they
would like having the outcome of performing the Web ser-
vices delivered. To illustrate user preferences, two extra
perspectives denoted by location and time are anchored to a
service chart diagram (Fig. 1)1. Location identifies partic-
ular places (e.g., classroom), and time identifies particular
moments (e.g., at 8am).

Because a composite service is made up of several com-
ponent services, the process model underlying the compos-
ite service is specified as a state chart diagram. In this dia-
gram, states are associated with the service chart diagrams
of the component services (Fig. 1), and transitions are la-
belled with events, conditions, and variable assignment op-
erations. Fig. 2 is the specification of the composite service

1The semantics of time/location perspective is based on [1]/[9].

of Melissa scenario. Each component Web service has a ser-
vice chart diagram: sightseeing (SI), weather (WE), shop-
ping (SH), and transportation (TR). These diagrams are con-
nected through transitions; some of these transitions have
constraints to satisfy (e.g., [confirmed(hot weather)]).

4.2 The view meta-model

Fig. 3 is the view meta-model for tracking personalized
Web services. This meta-model revolves around two types
of concept. The first type of concept identifies the build-
ing blocks of a context-aware and Web services-based sys-
tem. These blocks are context, Web service, and composite
service. The second type of concept identifies the mecha-
nism of running context-based requests over specifications
of composite services. The view materializes this mecha-
nism. A view is represented with a rounded rectangle in
Fig. 3, so that it is differentiated from Web service and com-
posite service concepts represented with regular rectangles.

Context is decomposed into three types: user which we
refer to as U-context, Web service which we refer to as
W-context, and composite service which we refer to as C-
context. While the role and structure of each context are not
within this paper’s scope, we refer readers to [7] for more
details. In addition we recall that we only focus on views as-
sociated with U-contexts of users. The connection (context,
user/Web service/composite service) is highlighted in Fig. 3
with related to lines. U-context enables tracking user in
terms of current location, current activities, etc. W-context
refers to the current capabilities and ongoing participations
of a Web service. Finally, C-context informs about the ex-
ecution status of the multiple component Web services of a
composite service.

Similar to context, a composite service specification is
decomposed into two types: initial and derived. An initial
specification is the specification that a designer devises for
the first time, in which he describes for instance the chronol-
ogy of the component Web services of a composite service
and the types of dependency between them. Fig. 2 is a com-
posite service specification of type initial. A derived speci-
fication is obtained after running a view over a specification
that might be either of type initial or derived. To illustrate
these two types of specification, the connection (view, com-
posite service specification) is highlighted in Fig. 3 with
two different lines: applied over as regular line and allows
obtaining as dashed line. Thus a derived specification can
also be subject to another view operation. The capability of
reusing the derived specifications of composite services is
another argument in favor of adopting views for Web ser-
vices tracking as already motivated in Section 3.

Last but not least, the aggregation of Web services
into composite services is highlighted in Fig. 3 with
participate in line. This participation complies with
a specific execution chronology that corresponds to or-

SCD-TR
(TRansportation)

(SCD: Service Chart Diagram); y: yes; n: no

SCD-SI
(SIghtseeing)

t0

t1

t2

t9
nSCD-SH

(SHopping)t5 t6

y

n t8

 t7
 [confirmed (hot weather)]

SCD-WE
(WEather)t3 t4

t11

y t10

 [checked (walking distance)]

Figure 2. Specification of the composite service of Melissa scenario

View
Applied over

Associated with

Of type

Related to

Related to

User

Context

CS WS U

Legend

CS: Composite service

WS: Web service

U: User

Related to

Pa
rt

ic
ip

ar
e

in

Initial

Derived Allows obtaining

Web service

O
rd

er
ed

/[
T

ra
ns

iti
on

s]

CS
specification

Of type

Figure 3. Representation of the view meta-model

dered/[transitions] line. [Transitions] represents the order
of connecting Web services together.

The dynamic aspect of the view meta-model has two
steps. The first step consists of checking the transitions
that have constraints (e.g., [checked(walking distance)] in
Fig. 2) before any view is applied over a specification. Tran-
sitions limit the number of Web services of a composite ser-
vice that need to be triggered. Once these constraints are
satisfied because of the features of the current context, the
second step consists of identifying the parameters that will
be included in the extraction of a view from a composite
service specification. We recall that we have identified two
parameters: execution time and execution location.

5 View’s mathematical model

We illustrated how a view is dependent on the prefer-
ences of users and constraints that regulate the transitions
between Web services. Execution time and execution loca-
tion are examples of preferences, and weather forecasts is
an example of constraint. This section provides a formal
specification of the view concept and proceeds next with
an application of this formal specification by using Melissa
scenario.

5.1 Definitions

Definition 1 (State chart diagram). Let ISCD and
DSCD be the set of Initial and Derived State Chart Di-
agrams respectively. And, let SCD be the set of all State
Chart Diagrams that specify composite services. SCD =

ISCD
⋃

DSCD. A state chart diagram scd ∈ SCD is a
triple scd =< S, T, T c > where:
• S = {s1, s2, · · ·} is the set of temporal and localized ser-
vice chart diagrams (Fig. 1). ∀s ∈ S, s = fs(t, l) where t
and l represent time and location parameters respectively.
• T = {t1, t2, · · ·} is the set of unconstrained transitions.
• Tc = {tc1, tc2, · · ·} is the set of constrained transitions
(e.g., is the weather hot?).
Definition 2 (Context). Let CONT be the set of all po-
tential contexts that can be generated after data collec-
tion (e.g., from sensors) and refinement. A context cont ∈
CONT is associated with the function F (U , W , C) where
U , W , and C represent User, Web service, and Composite
service contexts, respectively. As mentioned earlier, only U-
context is used for extracting derived state chart diagrams;
W- and C-contexts are discarded. U-context is defined by
the function fU(arg1, arg2, · · ·), where argi is an user pa-
rameter such as preferences, status, location, etc.

We now formally describe through the concept of de-
rived state chart diagram, how a view is extracted from a
given scd according to a given context cont, a given time
period time, and a given location loc.

Definition 3 (Derived state chart diagram). Let scd, cont,
time and loc be a state chart diagram (initial or derived),
a context, a time period, and a location, respectively. A
derived state chart diagram dscd ∈ DSCD is a tuple
dscd : V iew(scd, cont, time, loc) = < S′, T ′, T c′ >
where:
• S′ ⊆ S. This means that a derived specification does

not accept any additional services through their respective
service chart diagrams. However, some existing elements
namely states (i.e., illustrated with service chart diagrams
in Fig. 1) and transitions of S could be excluded from the
derived state chart diagram. For instance if the constraints
on an incoming transition of a service chart diagram is not
satisfied in a certain context, then this service chart diagram
will be excluded from the derived state chart diagram.
• T ′ = {t′ | either t′ ∈ T ∧
InitialState(t′) ∈ S′, or ∃ tc ∈ Tc |
t′ = FullInstanciation(tc, cont, time, loc) ∧
InitialState(t′) ∈ S′}. InitialState(t′) is a func-
tion that determines the initial state of a transition t′.
FullInstanciation(tc, cont, time, loc) is a function that re-
turns an unconstrained transition t′ because the constraint
on this transition, previously tc, is satisfied in the current
context cont, the given time-period time, and the given
location loc. Therefore, the unconstrained transitions of
a derived state chart diagram sscd are obtained either
from (1) the unconstrained transitions of scd for which
the initial state chart diagram belongs to S′, or (2) the
constrained transitions of scd which are satisfied in the
current context cont, current time-period time, and current
location loc.
• Tc′ = {tc′ | tc′ ∈ Tc ∧
UnSatisfied(tc′, cont, time, loc) = false ∧
InitialState(tc′) ∈ S′}. Tc′ is defined as the set of
constrained transitions, which are satisfied in the cur-
rent context, time period, and location, and for which
the initial state chart diagram is an element of S′.
UnSatisfied(tc′, cont, time, loc) checks whether tran-
sition tc′ is satisfied in the current context cont, current
time-period time, and current location loc.

5.2 Application to Melissa scenario

Fig. 2 represents scdMelissa , the state chart diagram
that implements Melissa scenario. The diagram is a
triple < S, T, T c > where S = {scd − si, scd −
we, scd − sh, scd − tr}, T = {t0, t1, t2, t11}, and Tc =
{t7, t8, t9, t10}. Let us assume that Melissa’s context re-
turns details on weather conditions and walking distance be-
tween malls: cont = (confirmed(hot weather) = yes ∧
checked(walkingdistance) = yes). Fig. 4 corresponds to
the derived state chart diagram dscdMelissa that is extracted
from scdMelissa for this given context cont. dscdMelissa is
defined by a triple < S′, T ′, T c′ > where S′ = {scd −
si, scd − we, scd − sh}, T ′ = {t0, t1, t2, t7, t10} and
Tc′ = ∅.

It should be noted that the constrained transi-
tions t7 and t10 in scdMelissa turn out unconstrained
transitions in dscdMelissa . Their respective con-
straints are satisfied in the current context namely
cont = (confirmed(hot weather) = yes ∧

checked(walkingdistance) = yes). Being not satisfied
in the current context cont are the unconstrained transi-
tions t8 and t9; they are excluded in dscdMelissa . Gener-
ally, a derived state chart diagram is in a constant evolution
along with the dynamic nature featuring the user context.
For instance constrained transitions become unconstrained
when more information about the user context are available.
With regard to Melissa, the obtained derived-state chart di-
agram is qualified as final since all its transitions are uncon-
strained. The current time and location values allow detect-
ing the Web services that are under execution. This is done
by using time and location perspectives of the service chart
diagram.

6 Implementation status
A proof-of-concept prototype for demonstrating the fea-

sibility of the view-based approach for tracking personal-
ized Web services is under development. We are adopting
Borland JBuilder Enterprise Edition 9.02. JBuilder has a
toolkit for building, testing, and deploying Web services,
and includes as well an explorer facility for publishing and
searching for Web services. For prototyping purposes, we
assume that contextual information associated with user is
already made available and converted into XML.

Two major functionalities are integrating into the pro-
totype: translation of composite service specification into
XML, and checking of contextual information. The trans-
lation, which takes as input the specification of a composite
service as a state chart diagram and outputs XML code, is
a two-step process. The first step describes the composition
itself in XML, whereas the second step describes the rules
that apply to the composition specification in an XSLT tem-
plate file. We are working towards automating the trans-
lation process. With regard to the checking functionality,
it uses an XML schema for describing contextual informa-
tion structure and checking that this information fits into the
structure model. By introducing the contextual information
parameters into the XSLT template, we derive the compos-
ite service specification and build a derived state chart dia-
gram. The XSLT template uses the XPath query engine in
order to locate the elements of the specification that match
the contextual information it receives.

7 Related work

The notion of view is adopted by Roman et al. [10], who
suggested a declarative approach to agent-centered context-
aware computing in ad-hoc wireless environments. While
we consider a view as a concrete implementation of con-
text over a composite service specification, Roman et al.
structure context in terms of fine-grained units referred to
as views. In that case a view is a projection of the maxi-
mal context together with an interpretation that defines the

2http://www.borland.com/jbuilder/enterprise/index.html.

(SCD: Service Chart Diagram); y: yes; n: no

SCD-SI
(SIghtseeing)

t0

t1

t2

SCD-SH
(SHopping)t5 t6

t7SCD-WE
(WEather)t3 t4

y t10

Figure 4. Sample of a derived state chart diagram

rules of engagements between a software agent and a partic-
ular view. The maximal context includes information that
all hosts in the network store and the context information
(e.g., location, time) that the agents sense on these hosts.

Nassar et al. proposed VUML, standing for View-based
Unified Modeling Language, as a means for supporting
the concept of multiview class [8]. VUML’s objective is
to store and deliver information according to users’ view-
points. Nassar et al.’s proposal consists of a base class
(i.e., default view) and a set of views that correspond to dif-
ferent viewpoints obtained over the base class. Based on
user profile, a view-extension relationship is set between a
view and an extension of the default view. Several simi-
larities are identified between our work and Nassar et al.’s
work. Independently of the concept (class or state chart)
on which the extraction of a view executes over, the base
class corresponds to the initial specification of a composite
service, and the viewpoint on the class base corresponds
to a derived specification of a composite service. How-
ever a major difference between both works resides in the
static vs. dynamic nature that features obtaining a view.
Nassar et al.’s view depends on user profile that is to a cer-
tain extent static (i.e., content does not change frequently).
Our view approach depends on context that is dynamic by
nature (i.e., what is going on over time).

In the context model of [5], user activities are in the form
of a temporal fact type that covers past, present, and fu-
ture activities. We are adopting a similar representation for
users’ activities with the various arguments that associate
services with previous, current, and next periods of time. In
addition, associations between users and their communica-
tion channels and devices as reported in [5] are considered
in the U-context.

8 Conclusion

In this paper we presented a view-based approach for
tracking personalized Web services. Web services are sub-
ject to personalization when there is a need of accommo-
dating user preferences during these Web services perfor-
mance and outcome delivery of this performance. To guar-
antee that user preferences are properly handled during Web
services execution, a view has offered the opportunity of
zooming into the specification that composes Web services.

As time advances, location changes, or constraint becomes
satisfied, the deployment of a view over a specification pro-
gresses. Indeed, a view contains all the elements currently
present within an ongoing composite service specification
that are relevant to a particular context of user such as time
and location.

References

[1] J. F. Allen. Maintaining Knowledge about Temporal Inter-
vals. Communications of the ACM, 26(11), November 1983.

[2] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini,
and M. Mecella. A Foundational Vision for e-Services. In
Proc. of Ubiquitous Mobile Information and Collaboration
Systems Work. (UMICS’2003) held in conjunction with The
15th Int. Conf. On Advanced Information Systems Engineer-
ing (CAiSE’2003), Klagenfurt/Velden, Austria, 2003.

[3] N. Boudriga and M. Obaidat. Intelligent Agents on the Web:
A Review. Computing in Science Engineering, 6(4), July-
August 2004.

[4] P. Brézillon. Focusing on Context in Human-Centered Com-
puting. IEEE Intelligent Systems, 18(3), May/June 2003.

[5] K. Henricksen and J. Indulska. A Software Engineering
Framework for Context-Aware Pervasive Computing. In
Proc. of The Second IEEE Int. Conf. on Pervasive Comput-
ing and Communications (PerCom’2004), Orlando, Florida,
USA, 2004.

[6] Z. Maamar, B. Benatallah, and W. Mansoor. Service
Chart Diagrams - Description & Application. In Proc. of
The Alternate Tracks of The Twelfth Int. World Wide Web
Conf. (WWW’2003), Budapest, Hungary, 2003.

[7] Z. Maamar, S. Kouadri Mostéfaoui, and H. Yahyaoui. To-
wards an Agent-based and Context-oriented Approach for
Web Services Composition. IEEE Transactions on Knowl-
edge and Data Engineering, 2005 (forthcoming).

[8] M. Nassar, B. Coulette, X. Crégut, S. Ebersold, and A. Kri-
ouile. Towards a View Based Unified Modeling Language.
In Proc. of The 5th Int. Conf. on Enterprise Information Sys-
tems (ICEIS’2003), Angers, France, 2003.

[9] D. Papadis and T. Sellis. On the Qualitative Representation
of Spatial Knowledge in 2D Space. The Very Large Data
Bases Journal, Springer Verlag, 3(4), 1994.

[10] M. Roman and R. H. Campbell. A User-Centric, Resource-
Aware, Context-Sensitive, Multi-Device Application Frame-
work for Ubiquitous Computing Environments. Tech-
nical report, UIUCDCS-R-2002-2282 UILU-ENG-2002-
1728, Departement of Computer Science, University of Illi-
nois at Urbana-Champaign, Urbana, IL, USA, 2002.

