
A Mediation Framework for Web Services in a Distributed Healthcare
Information System

Michael Mrissa
Universit́e Bordeaux 1

Bordeaux, France

michaelmrissa@myway.com

Djamal Benslimane and Chirine Ghedira
Universit́e Claude Bernard Lyon 1

Lyon, France

{djamal.benslimane,chirine.ghedira}@iuta.univ-lyon1.fr

Zakaria Maamar
Zayed University

Dubai, United Arab Emirates

zakaria.maamar@zu.ac.ae

Abstract

Conceptualizing distributed Healthcare Information
System is an important step toward the enhancement of clin-
ical decision support system. In this paper, we propose a se-
mantic mediation of Web Services interfaces for distributed
healthcare system. Our proposal is an approach based on
Web Services technology and their mediation in a Peer to
Peer environment. This approach constitutes the foundation
for the set-up of a mediation framework built around the
JXTA P2P architecture applied to cardiology domain in col-
laboration with the National Institute of Health and Medi-
cal Research (INSER ERM 107). To achieve our goal, we
used the OWL-S language as a means of describing seman-
tics of Web Services interfaces, and the JXTA distributed
architecture.

1. Introduction

Retrieving medical information and conceptualizing
distributed healthcare systems still are difficult tasks, espe-
cially in the cardiology domain. Health professionals are
faced to a large amount of data, with the concern of a seam-
less and rapid access to patients’ information without the
constraints of their semantic and location diversity. A pa-
tient’s computer record is composed of heterogeneous data
with various granularity or aggregation levels that may be
displayed according to different modalities. Data may di-
rectly come from clinical observations or result from several
processing steps performed on biosignals and images cap-
tured by different means. Information overload, complex-
ity and heterogeneity of cardiology data on the one hand,
and the proprietary basis of most existing healthcare sys-
tems on the other hand, lead to the need of more flexible
solutions for delivering information to the user. Medical in-
formation must be available and shareable among different
physicians consulting a patient record, compliant with each

physician’s clinical practices, and specific to each patient
or situation (Historical data for instance, can be presented
through graph-based or text-based interfaces). To fulfill
these requirements, we propose an approach based on Web
Services technology and their mediation, since the techno-
logical development of this paradigm aims at improving
inter-platform communication through well-defined stan-
dards, especially in a dynamic environment. This approach
is a mediation framework applied to the cardiology do-
main, built on a distributed P2P architecture, more precisely
JXTA-based. This framework is based on the OWL-S lan-
guage as a means of describing semantics of Web Services
interfaces, in order to solve heterogeneity problems.

The rest of the paper is organized as follows. In sec-
tion 2 we briefly introduce the Web Services, Semantic Web
and P2P domains and we review different approaches for a
semantic enhancement of Web Services. Then, we present
a running example and propose a classification of Web Ser-
vices interface heterogeneities in a composition, before de-
veloping a solution based on OWL-S for a dynamic media-
tion of semantic Web Services. In section 3 we outline our
framework for a semantic Web Services integration in a P2P
environment, and we illustrate the example introduced pre-
viously. We conclude with a review of our contribution and
some propositions for future improvements of our architec-
ture and mediation proposal.

2. Mediation for Medical Web Services

While building our approach for a mediation architec-
ture in the domain of medical information systems, three
main areas were mentioned : Web Services, the semantic
Web, and P2P. In this section we provide some background
knowledge related to these domains. Then, we introduce a
running example that illustrates our contribution and pro-
vides some support for our classification of interface het-
erogeneities. Lastly we present our work for a semantic
mediation of Web Services interfaces.



2.1. Background Knowledge

2.1.1. Web Services, Definition and Architecture. De-
spite several definitions from major vendors, the World
Wide Web Consortium (W3C) provides a quite straightfor-
ward definition to Web Services :

“A Web Service is a software application identi-
fied by a URI, whose interfaces and bindings
are capable of being defined, described and
discovered by XML artefacts and support di-
rect interactions with other software applica-
tions using XML based messages via Internet
based protocols.”

Web Services architecture is built on three major actors
(see figure 1). Providers supply all the implementation of

Figure 1. Web services architecture [9]

Web Services. They publish Web Services on the Internet,
in registries that store Web Services descriptions (WSDL)
and provide a centralized repositories for discovery. Clients
find Web Services (generally by querying one of these reg-
istries) and query them by sending XML requests.

More precisely, Web Services architecture relies on the
four main layers of its protocol stack (see figure 2) :

Figure 2. Web services protocol stack [9]

• The transport layer is the means for message trans-
mission over the network. Its”de facto” standard pro-
tocol is HyperText Transfer Protocol (HTTP).

• The messaging layerprovides a means for encoding
messages in a common XML format. XML-RPC and
SOAP are currently the standards for this layer.

• A Web Service is described in thedescription layer,
and the standard protocol for this task is Web Service
Description Language (WSDL).

• The most famous architecture for Web Servicesdis-
covery is Universal Description, Discovery, and Inte-
gration (UDDI). It consists of a set of registries ac-
cessible from the Internet via an API, and it suffers
from problems due to its client server architecture.
UDDI providers use registry replication for maintain-
ing a good availability under high load.

There are two important aspects motivating the use of
Web Services. The first one is the use of XML language as
a building block. It provides application-independence, as
this language is not bound to any kind of proprietary solu-
tion for interpretation (XML parsers are widely available).
The second one is the vision of a Web Service as a compo-
nent that brings out the idea of a cross-platform technology,
accessible in a standardized manner, and supporting com-
position or aggregation.

2.1.2. Semantic Web, History and State of The Art.
The term ”Semantic Web”, firstly introduced by Berners-
Lee et al. [5], is about the means to make data machine-
understandable, since data semantics (meaning of data) are
not explicitly represented on the Web. Additional structured
information, called metadata, are so essential in order to ex-
plicitly describe them. Several initiatives have been under-
taken for describing semantics of Web resources, firstly a
generation of non-XML languages, then XML Schema and
XML-based ontology languages [9]. Resource Description
Framework (RDF) is the most important XML-based at-
tempt for a semantic description of Web resources. This
W3C project defines a grammar (RDF Syntax) and a way
to structure information (RDF Schema) for describing do-
main specific knowledge with ontologies. Nowadays, new
languages like OWL extend RDF principally because it still
lacks from several features for describing information.

While Semantic Web is interested in describing static
information available on the Internet in a machine-
understandable way, Web Services are concerned with inter-
working between applications via the Web in order to make
it dynamic. Web Services represent an interesting domain
of application for the use of semantics. There are several
ways of inserting semantics in Web Services. We present
hereafter the important work in field.

A well-known approach consists in using a dedicated
language. Recently, the DAML-S Coalition created OWL-S
(previously named DAML-S), a language built on the OWL
Candidate recommendation from the Web-Ontology Work-
ing Group. OWL-S stands for Web Ontology Language for
Services, and defines a set of classes and properties for de-
scribing Web Services semantics, focusing on their prop-



erties and capabilities [1, 13, 14]. The goal of OWL-S is
to allow a better automation of Web Services-related tasks
like discovery, invocation, composition and interoperation.
W3C defines OWL-S as:

“...a OWL-based Web Services ontology, which
supplies Web Services providers with a
core set of markup language constructs
for describing the properties and capabili-
ties of their Web Services in unambiguous,
computer-interpretable form.”

(OWL-S Release 1.0)

Another way to semantically enhance Web Services
description is to annotate their description (WSDL) files.
With the help of the extensibility support of WSDL, files
can be extended with semantic information [25]. If us-
ing Java, Web Services source code can be annotated, as
usually WSDL files are issued from Web Services code
(Java2WSDL tool).

A third idea consists in registering semantic constructs
in UDDI. Particularly, Verma et al. [26] present a P2P so-
lution for a decentralized localization of Web Services de-
scription repositories. UDDI data structures can be used to
store semantic details of Web Services [25].

Two other approaches can be mentioned for semanti-
cally describing Web Services. A first one consists in using
RDF in conjunction with WSDL, or some other standards,
to describe a Web Service. This approach can be effective
because it allows describing WSDL in RDF syntax, which
makes it compatible with existing RDF-based systems [22].
A second approach aims at automatically generating meta-
data [12], using machine learning and clustering techniques
in order to attach semantic metadata to Web Services, clus-
tering techniques serving to categorize Web Services into
the classifications included in WSDL.

Other groups [6,15] are interested in defining a formal
framework for allowing a better relation inclusion and un-
derstanding between global properties of a Web Services
and local properties of its components. Their motivation is
to develop techniques of composed Web Services properties
checking and synthesis, starting from the properties of their
components.

2.1.3. The JXTA P2P Framework. The JXTA (for “JuX-
TApose”) project [21], created and sponsored by Sun Mi-
crosystems, is an open source implementation of the P2P
paradigm, based on original ideas like peergroups and re-
lying on famous concepts like UNIX-style pipes for point-
to-point communication. Moreover, the use of ubiquitous
protocols like TCP/IP for local network and HTTP for in-
ter network communication makes of JXTA a standardized

specification for P2P applications. As quotes one of the cre-
ators of JXTA, independence is a primordial characteristic
of this specification:

“ Java implies platform independence, XML im-
plies application independence, JXTA implies
network independence.”

(Bernard Traversat)

Since its birth, JXTA has grown and now comes with
many features added to a standard set of core services, a
complete binding for Java, and a complete C implementa-
tion. Moreover, the management of peergroups, the pub-
lishing of services within a same group, and the concept of
group service (a service automatically provided by all the
peers in the group) supply a rich framework for developing
P2P applications.

The use of “rendezvous peers” and “relay peers” al-
lows communication to pass through firewalls and, like a
Virtual Private Network, allows devices from two separate
local networks to get connected as if they were in the same.
It is also possible to integrate existing services like CORBA,
RMI or others in a JXTA envelope and to publish them
through the JXTA network. This capacity of integration al-
lows a good reuse of previous systems, adding transparency
to the implementation of existing services, which are seen
as normal JXTA services. JXTA security is based on a built-
in model allowing encrypted and authenticated (SSL) com-
munication between two peers. This specification for secu-
rity potentially supports any other choices of implementa-
tion. Algorithms for encoding information and passwords
can be chosen by the developer. Security is an important
feature in the medical environment, where data confiden-
tiality is a major constraint, so the reliability of JXTA’s se-
curity model is an important advantage in the medical do-
main. Also, integration in open source IDE like Eclipse is
quite straightforward thanks to a special plug-in.

• JXTA Peers

JXTA defines a peer as “any digital device connected to
a network” [21]. Peers can belong to different JXTA peer-
groups (basically a group of peers), depending on users’
choice. There are different kinds of peers. Rendezvous
peers provide a landmark for other peers. By default,
JXTA uses known rendezvous peers that act as bootstrap-
ping peers, providing the lists of peers they are connected
to, and thus initiating the discovery process. Relay peers are
special peers that act like bridges in a physical network. A
relay that interconnects two local networks will forward all
the requests sent over one network to the other one, thus en-
abling both network to communicate seamlessly with each
other. As stated in Oaks et al. [21], most of the time dedi-
cated peers act both as a relay and as a rendezvous peer. It



is the network administrator’s choice to determine the ratio
of peers acting as relays and/or rendezvous peers.

• Peergroups

A peergroup in JXTA is simply a group of peers, and
giving a meaning to a peergroup is left to application devel-
opers. In practice, group classification limits the range of
resource search and selection. There is a default “NetPeer-
Group” that includes all the peers from all the peergroups
(except if there is no link at all between groups) and this
default peergroup virtually allows any peer to establish a
dialog with any other peer. A group also has a member-
ship policy, and once again it is the developer’s role to de-
fine the level of security or requirements needed for a peer
to joining a peergroup. As a consequence, the network is
no more fragmented by firewalls and network topologies,
but by peergroup membership policies. Members of a peer-
group can access services provided in this particular peer-
group, whether they provide these services or not.

• Pipes

The idea of pipes is adapted from UNIX pipes, and
used to provide end-to-end unidirectional communication
between peer processes. A pipe is basically a communi-
cation channel between two JXTA endpoints. It supports
secured communication if necessary, using encryption al-
gorithms such as SHA-1 or RSA [21]. Bidirectional pipes
are also implemented in the Java bindings of the JXTA spec-
ification.

• Advertisements

JXTA also introduces the concept of advertisements,
that describe available network resources like pipe end-
points, services (for instance WS), peers and other peer-
groups. There are six basic classes of advertisements, and
it is possible to create specific subclasses describing more
particular objects. Advertisements are published over the
network to participants of a peergroup in a decentralized
manner [21]. The architecture of JXTA is based on the
distribution of advertisements. Advertisements are stored
in each peer local cache and accessed when needed. They
are the standard XML-based publication format defined in
JXTA, though different from WSDL. There is a level of
overlapping between the Web Services protocol stack (us-
ing UDDI) and JXTA’s architecture at the publication and
discovery level. Based on the latter background, we provide
a framework for Web Services integration into the JXTA
network applied to the medical domain through a running
example presented hereafter.

2.2. Running Example

In this work, we consider the case of a physician that
needs to check historical data about a patient. For instance,
the physician needs to know if the patient has any allergy, or
heart problems, in which case some categories of medica-
tion are not recommend, or particularly dangerous. Results
and dates of last analysis may also provide important infor-
mation. Our goal is to automate the process of gathering
that patient’s information and to accurately display it to the
physician. For this purpose, following steps are required:

• Firstly, find available medical centers providing Web
Services that give patients’ historical data (see fig-
ure 3).

• Secondly, ask each medical center for descriptions of
its Web Services (how to query them) and for a seman-
tic description of the vocabulary used for communicat-
ing (what is the exact meaning of these descriptions).

• Thirdly, automatically call Web Services, interpret and
then merge (or put together in some way) their re-
sponse messages for user display.

• Finally, when receiving response messages from dif-
ferent Web Services, our client program must adapt its
behaviour and accurately display the information.

Figure 3. Accessing Medical Web Services

In our example we have two kind of Web Services. The
first kind of Web Services, when receiving a client’s insur-
ance number, returns data about a patient’s historical back-
ground, and the second kind returns patient’s chest X-ray
images. So, these Web Services take a non negative non
null integer as an input parameter, and they return the date
the answer was generated, the type of answer (X-ray images
or some historical data), and data themselves. When a Web
Service returns an image, additional information specifies
units of the image.



As mentioned before, these Web Services are fre-
quently heterogeneous. We propose hence a classification
of their interface heterogeneities. However, this classifica-
tion is mainly adapted from another contribution to be sub-
mitted. In the context of our medical Web Services, data
conflicts can be described as follows:

• The semantic level

We detail three kinds of semantic conflicts: label, unit
and value conflicts. Label conflicts reside in the vocabu-
lary used for data description. For instance, a label conflict
occurs when a French Web Service uses the word ”DON-
NEES” in order to name some data parameter, whereas an
English Web Service uses the word ”DATA”. In this case,
two different words have the same meaning, but this conflict
also occurs when the same word means something different
in another language.

Unit conflicts refer to different units used in a same de-
scription. For example a ”UNIT” parameter describing the
unit used in images can be expressed in inches or centime-
ters. This problem becomes more important with discrete
data like temperature where units and scales can change
(Celsius and Fahrenheit degrees for example).

A value conflict occurs when different values have the
same meaning. This is different from the label conflict de-
scribed above because it concerns the content of a parameter
and not its name. For instance values addressing a patient’s
gender can be ”masc” or ”fem” in a Web Service, and ”m”
or ”f” in a second.

• The structural level

Structural conflicts occur when parameters are struc-
tured in different ways. In our example, a first service re-
turning some historical data could have three output param-
eters, whereas another one only has two. There is a mis-
match in the structure of the information, and in the domain
of Web Services this is characterized by the number of input
and output parameters.

Merging conflict is a particular case of structural con-
flict. A merging conflict exists in the case of several param-
eters describing the same entity on a service, and of a single
parameter describing an entity on another Web Service. For
instance a Web Service may describe data type (historical
data or image) in an independent parameter called ”TYPE”.
Another Web Service can describe data type inside another
parameter, separating data type from the other parameter
with a special character like a coma. Thus parameters need
to be merged in order to match those of the second Web
Service.

• The syntactic level

Whereas in traditional data exchange, syntax conflicts
usually happen between proprietary data storage methods,
in the context of Web Services, the standard use of XML
as an independent encoding language hides all conflicts that
could happen. This is one of the advantages of using stan-
dard Web Services, relying on HTTP, SOAP and XML.
However, it is noticeable that Web Services can use non-
XML syntax languages, but then they are limited to a local
organization.

2.3. Medical Web Services Interface Mediation

A common agreement like an ontology provides a sup-
port for solving input/output heterogeneities listed above.
We consider the OWL-S service-oriented ontology lan-
guage as a reliable answer to such problem, as ontolo-
gies represent widely and freely distributed references, in-
spired from the Healthcare Information System Architec-
ture (HISA) work item of CEN/TC 251. Using an ontology
allows describing a domain knowledge, and precisely spec-
ifying data meaning and structure. Medical centers willing
to join a peergroup providing medical Web Services must
first agree on a common ontology, and give a OWL-S de-
scription for each Web Service provided. Then, when in-
voking a Web Service, mappings from its WSDL file to the
common OWL-S ontology can be generated, and exchanged
data are interpretable by all the peers of the community (see
figure 4). Thus, depending on semantic descriptions of Web
Service interfaces, answers can be differently interpreted,
processed and accurately displayed to the user.

In our case, if a Web Service provides heart character-
istics images, they are displayed correctly in the user inter-
face. If another Web Service provides some historical data
about the patient, they are merged with other historical data
received from other medical centers. In the end, user inter-
face will provide a global view of every kind of historical
data gathered from medical centers.

Figure 4. Interface mappings to ontology

3. Medical Web Services Integration in a P2P
Framework

The approach presented above, which is built on the
use of ontologies, forms a basis for medical Web Services
composition and aggregation. In this section we integrate



this infrastructure into the JXTA framework, and illustrate
our approach with the example introduced before.

3.1. Discovery

In the case of our running example, a physician’s ap-
plication accesses distant Web Services. Those latter are
typically available through UDDI. However, in our archi-
tecture, Web Services are discovered through the JXTA P2P
network, so that the end-user application does not use UDDI
for discovery. As network resources (and Web Services ad-
vertisements) are spread over the network in a decentralized
manner, all the disadvantages of centralized UDDI architec-
ture are solved.

Concerning the semantics of Web Services, we assume
that each JXTA peergroup is associated with a particular
ontology. For instance, our medical centers are all part of a
peergroup with an ontology of Web Services that describes
historical data and supports encoded images as an output
parameter. As a consequence, limits of Web Services search
and selection are no more physical limits of the network, but
rather they are constraints stated in our peergroup definition,
like membership fee or identification.

This independence from the physical layer is an impor-
tant advantage in medical information systems, where loca-
tions of hospitals and emergency centers (and Web Service
providers in general) form an unstructured network. JXTA
provides end users with a list of available peergroups, so
physicians can query for medical peergroups and register
the peergroup they want. In our example, the physician
registers in the peergroup providing patients’ historicaland
heart-related data from medical centers. Different selection
criteria may apply at these stages (peergroup selection and
registration), but this is out of our scope, and described in
Oaks et al. [21].

3.2. Publication

For Web Service publication we define a special ”gate-
way peer”, that is a special featured peer able to encapsu-
late both WSDL and OWL-S descriptions in a JXTA ad-
vertisement, and to publish the latter into the peergroup
(see figure 5). A reliable solution consists in installing a
gateway peer for each medical center, and registering it
into the JXTA peergroup for publishing Web Services ad-
vertisements at regular intervals (if a timeout has been set
for advertisement availability). Gateway peers form a link
between available Web Services (that are typically discov-
ered by accessing UDDI registries) and JXTA peergroups
in which discovery is decentralized. Since gateway peers
can be installed by virtually anybody, any kind of exist-
ing Web Services may be made available in our peergroup,
since it gets the right to register from the peergroup’s admin-

istrators. A proof-of-concept implementation of a gateway
peer has been developed and tested for publication through
a JXTA network. Ongoing work is aiming at an easily de-
ployable component that could be installed on any JXTA
peer, making it a gateway peer.

Figure 5. Web service integration

3.3. Invocation

There are several strategies for Web Service invocation
from the JXTA network. Administrators can decide that
some specialized peers only are able to invoke Web Ser-
vices, or they can choose that all the peers can invoke Web
Services independently. In our architecture, we chose to
allow all the peers in the community to seamlessly invoke
Web Services. For that purpose, we use a generic Web Ser-
vice client engine that allows Web Service invocation from
a WSDL description. This invocation engine extracts input
and output parameters needed for Web Service invocation,
and asks user if additional information is necessary. Then it
builds and sends requests for invoking Web Services. It is a
”group service” in the JXTA community, in other words it is
a service that is shared between all the peers, and each new
peer joining the community downloads the piece of code
(JXTA module) needed for executing this service. Thus,
every peer is able to directly invoke Web Services, avoid-
ing bottleneck problems that appear when using special-
ized peers, and taking full advantage of the P2P community.
Moreover, our peers are able to accurately interpret and pro-
cess results received, thanks to the OWL-S description, that
gives semantic information about the Web Service.

3.4. Application

In this section we detail the complete process of our
architecture (Figure 6) using our example presented in sec-
tion 2.2. A physician invokes several medical centers for
gathering a patient’s data. Firstly, the JXTA peer searchesin
its registry for resource descriptions corresponding withits



needs, in our case Web Services providing historical med-
ical information. Then a list of available Web Services is
built up, and OWL-S descriptions are compared with the
common ontology, which is present in each peer. After
checking the validity of each Web Service description, the
peer knows if it can interpret answers delivered by Web Ser-
vices. Interface mappings of each Web Service are stored
in a local registry, and unmatching Web Services are ig-
nored. At this time, the peer uses its invocation engine
for dynamically calling each Web Service endpoint, ask-
ing the end user (our physician) for additional information
if required. When receiving different answers from Web
Services, the peer classifies historical data and images, and
processes them for final display.

Figure 6. Detailed web service invocation

4. Conclusion and Future Work

In this paper we outlined a complete infrastructure,
combining OWL-S based mediation for semantically de-
scribed Web Services, and their integration into a JXTA
P2P platform, applied to the medical domain. We proposed
a classification of interface heterogeneities, and introduced
the idea of a specialized peer (called gateway peer) and of a
generic client engine for respectively Web Services publica-
tion and invocation, as building blocks for medical Web Ser-
vices P2P integration model. The descriptive capability and
extensibility of OWL-S provides a good support for precise
descriptions of Web Services characteristics and properties.
Furthermore, the flexibility of P2P model frees the network
from its physical architecture and provides a good dynamic
support for medical Healthcare information system.

The use of a medical ontology as a common agreement
for describing Web Services data semantics is reliable, and
can be extended to other Web Service semantics, like QoS,
functional and execution semantics. Also, using several on-
tologies is a perspective to a larger subject encompassing
ontology merge and translation.

References

[1] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Mar-
tin, D. McDermott, S. McIlraith, S. Narayanan, M. Paolucci,
T. Payne, and K. Sycara. DAML-S: Web Service Description
for the Semantic Web, 2002.

[2] K. Anyanwu, A. Sheth, J. Cardoso, J. Miller, and K. Kochut.
Healthcare Enterprise Process Development and Integration.
Technical report, LSDIS Lab, Department of Computer Sci-
ence, University of Georgia, Athens, GA, 1999.

[3] B. Benatallah, M.-S. Hacd, C. Rey, and F. Toumani. Seman-
tic Reasoning for Web Services Discovery. InWWW2003
Workshop on E-Services and the Semantic Web, Budapest,
Hungary, May 20, 2003.

[4] B. Benatallah, B. Medjahed, A. Bouguettaya, A. Elma-
garmid, and J. Beard. WebBIS: a system for building and
managing Web-based virtual enterprises. InProceedings of
the 1st workshop on Technologies for E-Services, in cooper-
ation with VLDB2000, Cairo, Egypt, September 2000.

[5] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic
Web. The Scientific American, May 2001.

[6] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specifica-
tion: a new approach to design and analysis of e-service com-
position. InProceedings of the twelfth international confer-
ence on World Wide Web, pages 403–410. ACM Press, 2003.

[7] CEN/TC 251/ENV 12967-1 Medical Informatics.Health-
care Information System Architecture Part 1 (HISA), page
130. Healthcare Middleware Layer: European Commitee for
Standardization, 1998.

[8] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web Services Description Language (WSDL) 1.1.
W3C, March 2001.

[9] A. Dogac, G. Laleci, S. Kirbas, Y. Kabak, S. Sinir, and
A. Yildiz. Artemis: Deploying Semantically Enriched
Web Services in the Healthcare Domain. Technical report,
METU-SRDC, November 2003.

[10] D. Fensel and C. Bussler. The Web Service Modeling Frame-
work Web ServicesMF. Technical report, Vrije Universiteit
Amsterdam, 2002.

[11] M. Gudgin, M. Hadley, J.-J. Moreau, and H. F. Nielsen.
SOAP Candidate Recommendation Version 1.2.W3C, 2002.

[12] A. Heß, , and N. Kushmerick. Learning to attach semantic
metadata to Web Services. InInternational Conference on
Web Services (ICWeb Services’03), 2003.

[13] I. Horrocks. DAML+OIL: A reason-able web ontology lan-
guage. InExtending Database Technology, pages 2–13,
2002.

[14] I. Horrocks, P.F.Patel-Schneider, and F. . van Harmelen. Re-
viewing the Design of DAML+OIL: An Ontology Language
for the Semantic Web. InProceedings of the 18th National
Conference on Artificial Intelligence (AAAI 2002), pages
792–797, 2002.

[15] R. Hull, M. Benedikt, V. Christophides, and J. Su. E-
services: a look behind the curtain. InProceedings of the
twenty-second ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 1–14. ACM Press,
2003.

[16] E. Leclercq, D. Benslimane, and K. Yétongnon. ISIS: A Se-
mantic Mediation Model and an Agent Based Architecture
for GIS Interoperability. InProceedings of the International
Database Engineering and Applications Symposium, Mon-
treal, Canada, 1999.



[17] Z. Maamar and N. C. Narendra. Ontology-based Context
Reconciliation in a Web Services Environment: From OWL-
S to OWL-C. InProceedings of The 2nd International Work-
shop on Web Services and Agent-based Engineering (Web
ServicesABE’2004) held in conjunction with The 3rd Inter-
national Joint Conference on Autonomous Agents & Multi-
Agent Systems (AAMAS’2004), New York, USA, July 2004.

[18] A. Mädche and S. Staab. Services on the Move - Towards
P2P-Enabled Semantic Web Services. InProceedings of
the 10th International Conference on Information Technol-
ogy and Travel & Tourism, ENTER 2003, Helsinki, Finland,
29th-31st January 2003. Springer, 2003.

[19] D. Martin, M. Burstein, O. Lassila, M. Paolucci, T. Payne,
and S. McIlraith. Describing Web Services using OWL-S
and WSDL. Technical report, DAML-S Coalition, October
2003.

[20] S. Narayanan and S. A. McIlraith. Simulation, verification
and automated composition of web services. InProceedings
of the eleventh international conference on World Wide Web,
pages 77–88. ACM Press, 2002.

[21] S. Oaks, B. Traversat, and L. Gong.JXTA in a Nutshell. In a
Nutshell. O’Reilly, September 2002.

[22] U. Ogbuji. Supercharging WSDL with RDF Managing
structured Web service metadata.IBM Developer Works,
2000. http://www-106.ibm.com/developerworks/library/ws-
rdf/?dwzone=ws.

[23] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Im-
porting the Semantic Web in UDDI. InProceedings of E-
Services and the Semantic Web Workshop, 2002.

[24] K. Sivahanmugam, A. Sheth, J. Miller, K. Verma, R. Aggar-
wal, and P. Rajasekaran.Databases and Information Sys-
tems, volume Praktische Informatik I, chapter Metadata and
Semantics for Web Services and Processes, pages 245–271.
Festschrift zum 60. Geburtstag von Gunter Schlageter, W.
Benn, P. Dadam, S. Kirn and R. Unland Editors, Hagen, Ger-
many, 2003.

[25] K. Sivashanmugam, K. Verma, A. Sheth, and J. Miller.
Adding Semantics to Web Services Standards. InInter-
national Conference on Web Services (ICWeb Services’03),
2003.

[26] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Ound-
hakar, and J. Miller. METEOR-S Web ServicesDI: A Scal-
able P2P Infrastructure of Registries for Semantic Publica-
tion and Discovery of Web Services.To be published in the
Journal of Information Technology and Management, 2004.

[27] D. Wu, B. Parsia, E. Sirin, J. Hendler, and D. Nau. Automat-
ing DAML-S Web Services Composition Using SHOP2. In
D. Fensel, K. Sycara, , and J. Mylopoulos, editors,Proc.
of the 2003 International Semantic Web Conference (ISWC
2003), pages 195–210, 2003. number 2870 in Lecture Notes
in Computer Science.


