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Preface

This collection of problems is based on the tutorial which I was delivering for several years
to the undergraduate students of financial mathematics at the University of Ljubljana.
Several problems in the book are due to my predecessor Aleš Toman; I am deeply grateful
to him.

The book covers counting processes in time. The mainpart of the matter is included
in [4]; however, other references listed here can also be used to advantage. Usually,
problems are grouped into clusters introduced by frames, which contain the summary
of the necessary theory as well as notation. All problems are solved, some of them in
several ways. However, there may always be yet another method, so the reader is always
encouraged to find an alternative solution.
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1 Selected Topics in Probability Theory

Conditional distributions. Stopping times. Computation of expectation by means of survival
function. Wald’s equation. Ranks, order statistics.

1. Let N be an N0-valued random variable.

a) Derive the formula:

E(N) =
∞∑
n=0

P(N > n) .

b) Compute E(N) in the special case where P(N > n) =
2

(n+ 2)(n+ 3)
for all

n = 0, 1, 2, . . .

2. Let T be arbitrary non-negative random variable.

a) Derive the formula:

E(T ) =
∫ ∞

0

P(T > t) dt .

b) Compute E(T ) in the special case where P(T > t) =
1

(1 + t)3
for all t ≥ 0.

3. Andrew is tossing a symmetric coin, while Bridget is rolling a standard die. Each
time Andrew tosses his coin and Bridget rolls her die at one time. The tosses and
the rollings are all independent. They toss and roll until either Andrew’s coin comes
up heads or they finish the third round. Find:

� the probability that Bridget never rolls a six;
� the expected number of the total number of the sixes rolled.

4. Let λ > 0. Take a random variable T ∼ Exp(λ). Given T , let a random variable X
follow the Poisson distribution Pois(T 2). Compute E(X) and var(X).

Stopping time

A {p, p + 1, p + 2, . . .}-valued random variable T is a stopping time with
respect to a sequence of random variables Zp, Zp+1, Zp+2, . . . if the event T = n
can be deterministically expressed in terms of Zp, Zp+1, Zp+2, . . . , Zn for all
n ∈ {p, p+1, p+2, . . .}. The phrase ‘can be deterministically expressed’ means
that there exists a set An, such that {T = n} = {(Zp, Zp+1, Zp+2, . . .) ∈ An}.
It is equivalent to say that the event T ≤ n can be deterministically expressed
in terms of Zp, Zp+1, Zp+2, . . . , Zn for all n ∈ {p, p+ 1, p+ 2, . . .}.
Furthermore, it is equivalent to say that the event T > n can be deterministi-
cally expressed in terms of Zp, Zp+1, Zp+2, . . . , Zn for all n ∈ {p, p+1, p+2, . . .}.
The domain of T or equivalently the number p is a constitutional part of the
definition.
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5. Again, Andrew is tossing a fair coin and Bridget is rolling a standard die. Each
time, they do it at one time, and the tossings and the rollings are all independent.
The times when they toss toss and roll are numbered by 1, 2, 3, . . . Determine
which random variables are stopping times (with respect to the sequence Z1, Z2, . . .,
where Zn denotes the pair of both outcomes at time t – the coin and the die – 12
possibilities):

a) the time when Bridget rolls her first six;

b) the time when Bridget rolls her second six;

c) the time when Bridget rolls her first six, provided that this happens up to time
100; otherwise 100;

d) the time when Bridget rolls her first six, provided that this happens up to time
100; otherwise 1;

e) the first time after time 100 when Bridget rolls a six;

f) the time when Bridget rolls her second six increased by 1;

g) the time when Bridget rolls her second six decreased by 1;

h) the time when Bridget rolls her first six after Andrew’s coin has come up heads
ten times;

i) the time when the Bridget’s total score first exceeds 42;

j) the first time when Bridget rolls her highest result at times 1, 2, . . . , 10.

6. Take:

� identically distributed random variables X1, X2, . . .;

� random variables Z0, Z1, Z2, . . ., such that Xn is independent of Z0, . . . , Zn−1

for all n ∈ N;

� an N0-valued random variable T , which is a stopping time with respect to the
sequence Z0, Z1, Z2, . . .

An important special case is when T,X1, X2, . . . are independent: in this case, we
can just set Z0 = T, Z1 = X1, Z2 = X2, . . . In general, however, Z0, Z1, . . . , Zn can
be interpreted as ‘everything that has occurred up to step n’. Define

S = X1 +X2 + · · ·+XT

(for T = 0, set S = 0). Assume that there exists µ = E(Xi) as well as E(T ).
Compute E(S) (the result is called Wald’s equation).

7. Again, a fair coin is tossed until tails come up. Compute the expected number of
tosses along with the expected number of heads that have appeared.

8. A fair coin is tossed repeatedly and all tosses are independent. For each n ∈ N,
denote by Sn the number of tails in the first n tosses. Next, let T be the number
of the tosses before the second tails (not including the toss when the coin comes
up tails second time). Determine E(ST ). Does Wald’s equation hold in this case?
Make a comment!
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9. A fair coin is tossed until two consequent tails. Compute the expected number of
all tosses along with the expected number of all tails.

10. Just like in Exercise 6, take:

� identically distributed random variables X1, X2, . . .;

� random variables Z0, Z1, Z2, . . ., such that Xn is independent of Z0, . . . , Zn−1

for all n ∈ N;

� an N0-valued random variable T , which is a stopping time with respect to the
sequence Z0, Z1, Z2, . . .

Now assume that there exist E(T ) and σ2 = var(Xi), that E(Xi) = 0 and that Xn is
a function of random variables Z0, . . . , Zn for all n ∈ N (implying that the random
variables X1, X2, . . . are independent). Compute var(S).

Does the result remain true even without the assumption that E(Xi) = 0?

11. Let X1, X2, . . . be independent and identically distributed, and let T be another
N0-valued random variable independent of the sequence X1, X2, . . .. Define:

S = X1 +X2 + · · ·+XT .

(for T = 0, set S = 0). Compute:

a) the variance var(S), provided that σ2 = var(Xi) and var(T ) exist (hint: let-
ting µ = E(Xi), E

[
(S − µT )2

]
, i. e., the variance unexplained by T ), can be

computed from the preceding exercise – the result is called Blackwell–Girshick
equation;

b) the generating function GS(z) = E(zS), provided that z > 0, that E(zS) <∞
and that GT (w) = E(wT ) <∞ for all w > 0.

Do these two results still hold if the assumption that T is independent of the se-
quence X1, X2, . . . is replaced by a weaker assumption that T is a stopping time with
respect to X0, X1, X2, . . ., where X0 is an additional random variable independent
of X1, X2, . . .?

12. Let X1, X2, X3, . . . be independent and identically distributed continuous random
variables.

a) Show that the random variables X1, X2, . . . are all distinct with probability 1.

b) We shall say that a record value occurs at time t if
Xt > max{X1, X2, . . . , Xt−1}. As we assume the maximum of the empty set to
be −∞, a record value always occurs at time 1. This gives rise to a counting
process with N-valued arrival times. Compute the probability that a record
value occurs at a given time t.

c) Show that the events that a record value occurs at a given time are independent.
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d) As usual, denote by Nt the number of record values up to and including time
t. Compute E(Nt) and var(Nt) and find the asymptotic behavior of these two
characteristics.

e) Let S be the time of the first record value from time 2 on (i. e., the second
arrival time of our counting process). Determine the distribution of S. In
particular, show that P(S <∞) = 1, while E(S) =∞.

f) Denote by S(y) the time of the first record value with value higher than y, that
is:

S(y) := min{t ; Xt > y} .

Show that the random variable S(y) is independent of XS(y) . In other words, the
first record value greater than y is independent of the time of its occurrence.
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2 Counting Processes

Basic concepts, fundamental equivalence. Bernoulli sequence as a counting process. Binomial
process. Memorylessness of geometric distribution.

A counting process describes things which are randomly distributed over
time, more precisely, over [0,∞). They will be called arrivals. It is only
important when an arrival occurs. Moreover, only finitely many arrivals can
occur in a finite time interval. However, infinitely many arrivals typically
occur in the whole time-line [0,∞). Such a process can be formally described
in various ways:

� by a random locally finite subset of [0,∞);

� by random variables Nt, t ∈ [0,∞), denoting the number of arrivals up
to and including time t;

� by ordered arrival times: S1 < S2 < S3 · · · . The random variable Sn is
called the n-th arrival time. Observe the fundamental equivalence:

Nt ≥ n⇐⇒ Sn ≤ t

1. A simple case of a counting process is the Bernoulli sequence of trials, i. e., the
sequence of independent random trials, such that each of them succeeds with the
same probability. In the corresponding counting process, arrivals can only occur at
times from N, and at a given time t, an arrival occurs if the t-th trial succeeds.

a) Find the distribution of Nt, the number of arrivals up to time t (t ∈ N) and the
number of arrivals between times s and t, i. e., Nt −Ns (s < t). Reformulate
the conclusions in terms of sums of independent random variables.

b) Let t1 ≤ t2 ≤ t3 ≤ · · · ∈ N. What is the relationship between random variables
Nt1 , Nt2 −Nt1 , Nt3 −Nt2 , . . .?

c) Find the distribution of the first arrival time S1.

d) Find the distribution of further arrival times Sn.

2. Consider a counting process with Nt + 1 ∼ Geom(e−t). Compute the expected first
and second arrrival time.

3. n guests are invited to a party, which starts at a given time. However, each guest
arrives with some delay. The delays are independent and distributed uniformly over
[0, 1]. Regarding the arrivals as a continuous-time counting process, determine the
distribution of the random variables Nt, 0 ≤ t ≤ 1, and Sk, k = 1, 2, . . . , n.

4. Consider a Bernoulli sequence of trials and denote by P the set of times of successes
(with the time running over N). Moreover, for t ∈ N, denote by P→\t the set of
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arrivals up to and including time t, and by P t→ the set of arrivals from time t on
(excluding t), with the time reset to zero:

P→ \t := P ∩ (0, t] , P t→ := P ∩ (t,∞)− t .

a) Show that P t→ is independent of P→\t and follows the same distribution as P .
This is called the time-homogeneous Markov property.

b) Take a stopping time T with respect to the sequence 0, Z1, Z2, . . ., where, for
t ∈ N, we set Zt = 1 in the case of success and Zt = 0 in the case of failure at
time t. Prove that the process PT→ is independent of

(
T,P→\T

)
and follows the

same distribution as P . This is called the strong time-homogeneous Markov
property.

5. Show that the geometric distribution is memoryless, i. e., if T ∼ Geom(p), then:

P(T = t+ s | T > t) = P(T = s) (∗)

for all t ∈ N0 and all s ∈ N. In addition, show that the geometric distribution is the
only memoryless distribution taking values in N. We assume that the conditional
distribution in (∗) makes sense, i. e., that P(T > t) > 0 for all t ∈ N0.

Inter-arrival times

Another way of defining a counting process is in terms of inter-arrival times,
i. e., the times between two consequent arrivals:

T1 = S1 , T2 = S2 − S1 , T3 = S3 − S2 , . . .

6. Consider a Bernoulli sequence of trials.

a) Show that Sn are stopping times. Combining with Exercise 4, what follows?

b) Find the distribution of all inter-arrival times Tn and show that they are mu-
tually independent. Reformulate the conclusion as a statement on sums of
independent random variables.

c) Find the distribution of the differences Sn − Sm, where m < n.
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3 Homogeneous Poisson Process

Motivation and definition of homogenous Poisson process. Corresponding distributions.

Homogeneous Poisson process

A homogeneous Poisson process with intensity λ > 0 can be defined as
a certain limit of processes arising from Bernoulli trials. It is characterized by
the following two properties:

� N0 = 0 and Nt − Ns ∼ Pois
(
λ(t − s)

)
for any 0 ≤ s ≤ t (implying

Nt ∼ Pois(λt)).
� For any sequence 0 ≤ t1 ≤ t2 ≤ t3 ≤ · · · , the random variables Nt1 , Nt2 −
Nt1 , Nt3 −Nt2 , . . . are independent.

Some more properties:
� The inter-arrival times T1, T2, T3, . . . are independent and folow the expo-

nential distribution Exp(λ).
� Sn ∼ Gama(n, λ) for all n ∈ N. More generally, Sn−Sm ∼ Gama(n−m,λ)

for any m ≤ n.
� For any sequence n1 < n2 < n3 < . . ., the random variables Sn1 , Sn2 −
Sn1 , Sn3 − Sn2 , . . . are independent.

� Like the Bernoulli sequence, this process also enjoys the strong time-
homogeneous Markov property: representing the process by a ran-
dom set P , for any stopping time T , the process PT→ is independent of(
T,P→\T

)
and follows the same distribution as P .

1. Patients arrive in a surgery according to a homogeneous Poisson process with inten-
sity 6 patients an hour. The doctor starts to examine the patients only when the
third patient arrives.

a) Compute the expected time from the opening of the surgery until the first
patient starts to be examined.

b) Compute the probability that in the first opening hour, the doctor does not
start examining at all.

2. Consider a homogeneous Poisson process with intensity λ.

a) Compute the auto-covariance function of the family Nt, i. e., all covariances
cov(Nt, Ns).

b) Compute the auto-correlation function of the family Nt, i. e., all correlations
cov(Nt, Ns).

c) For t1 ≤ t2 ≤ · · · ≤ tn, find the covariance matrix of the random vector
(Nt1 , Nt2 , . . . , Ntn).

3. Casinò Poisson. In a casino, a bell rings every now and then. Each time the bell
rings, the player can press a button. The player wins the game if they press the
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button before time 1 and, in addition, after they have pressed the button, the bell
no longer rings until time 1. Assume that the bell rings according to a Poisson
process with intensity λ > 0.

The strategy of the player is first to wait until time s and then to press the button
immediately after the bell rings.

a) Find the probability that the player wins the game (depending on s)?

b) Find the optimal value of s and the corresponding winning probability.

4. Let X ∼ Pois(λ) and Y ∼ Pois(µ) be independent random variables. Find the
conditional distribution of the random variable X given Z := X + Y .

5. Let N be a random variable denoting the number of arrivals, ditributed by Pois-
son Pois(λ). Each arrival is successful with probability p, independently of other
arrivals, as well as of the number of arrivals. Denote by S the number of successful
and by T the number of unsuccessful arrivals, that is, T = N − S.

a) Find the distribution of S and T .

b) Show that the random variables S and T are independent.

c) Show that under some other choice of the distribution of N , S and T are no
longer necessarily independent.

Remark. The transformation converting N to S is called thinning.

6. Show that the exponential distribution is also memoryless: for T ∼ Exp(λ) we have
for sufficiently large t, s ∈ N:

P(T ≤ t+ s | T > t) = P(T ≤ s) . (∗)

Moreover, show that the exponential distribution is the only memoryless distribution
which is continuous and with density being continuous on (0,∞) and zero elsewhere.
We assume that the conditional distribution in (∗) makes sense, i. e., that P(T >
t) > 0 for all t ≥ 0.

7. For independent random variables X ∼ Exp(λ) and Y ∼ Exp(µ), find the distribu-
tion of U := min{X, Y } and V := max{X, Y }.

8. A fire station receives emergency calls according to a homogeneous Poisson process
with intensity half a call per hour. Each time, the fire brigade needs certain time
to process the call and prepare for further calls (this total period will be called
intervention). During an intervention, the calls are redirected to other fire stations.
Suppose that the intervention times are distributed uniformly over the interval from
half an hour to one hour and independent of each other as well as of the emergency
calls.

Suppose that the fire brigade is able to respond to the calls at the moment (i. e.,
there is no intervention). Find the distribution of the number of the calls to which
the fire brigade responds before any call is redirected.
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9. Consider a homogeneous Poisson process with intensity λ.

a) Suppose that up to time t, exactly one arrival occured. Given this information,
find the conditional distribution of the arrival time.

b) Now suppose that exactly two arrivals occured up to time t. Compute the
conditional expectations of both arrival times.

Order statistic property

In a homogeneous Poisson process, given the event that there are exactly n
arrivals in a certain time interval, the conditional distribution of the restric-
tion of the process to this interval (considered as a random set) matches the
distribution of the set {U1, U2, . . . , Un}, where U1, . . . , Un are independent and
uniformly distributed over the interval.
Considering the time interval [0, t], given the event that there are exactly n
arrivals, the random vector of the arrival times (S1, S2, . . . , Sn) follows the
same distribution as the random vector (U(1), U(2), . . . , U(n)) of suitable order
statistics.

10. Passengers arrive at a railway station according to a homogeneous Poisson process
with intensity λ. At the beginning (time 0), there are no passengers at the station.
The train departs at time t. Denote by W be the total waiting time of all passengers
arrived up to the departure of the train. Compute E(W ).

11. Poisson shocks. Each arrival in a homogeneous Poisson process with intensity λ
causes a shock. Its effect s time units later equals e−θs. Denote by X(t) the total
effect of all the shocks from the interval [0, t] at time t. Compute the expectation
E
[
X(t)

]
.

12. A hen wants to cross a one-way road, where cars drive according to a homogeneous
Poisson process with intensity λ cars a time unit, all with the same speed. It takes
c time units for the hen to cross the road. Assume that the hen starts to cross the
road immediately when there is a chance to do it without being run over by a car.
Compute the expected total waiting and crossing time for the hen.

13. In a certain place at a fair, prizes are shared every now and then. Everyone being in
that place when the prizes are being shared gets a prize. The sharing times form a
homogeneous Poisson process with intensity λ. At time zero, Tony observes that a
sharing is in progress. He rushes towards the sharing place, but is too late. Then he
waits for the next sharing, but at most for time δ: after that time, he gets bored and
moves eslewhere. As soon as another sharing starts, he rushes towards the place,
but is again too late and starts waiting for the next sharing, again at most for time
δ. So he repeats until ge gets the prize. Denote by T the time when Tony eventually
gets his prize. Compute E(T ), assuming that the fair is open infinitely long.

14. For a counting process on (0,∞), denote:
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� by At the age of the process at time t, i. e., the time that has passed from
the last arrival until time t if an arrival has indeed occured until t; otherwise,
define the age to be t (alternatively, setting S0 := 0, we have At = t− SNt);

� by Et the exceedance at time t, i. e., the time that passes from t to the first
arrival after t (i. e., Et = SNt+1 − t).

For a homogeneous Poisson process with intensity λ:

a) Find the distributions of the random variables At in Et.

b) Show that the random variables At and Et are independent.

c) Find the distribution of the sum At+Et (i. e., the gap between two consequent
arrivals surrounding t).
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4 Marking, Thinning, Superposition

Homogeneous Poisson process with discrete marks

Consider a homogeneous Poisson process with intensity λ, where each arrival
is given a random mark, where the marks are independent of each other as
well as of the original process, following the distribution:(

a1 a2 · · · ar
p1 p2 · · · pr

)
,

This marked process follows the same distribution as a union of r independent
homogeneous Poisson processes with intensities p1λ, p2λ, . . . , prλ, where the
arrivals in the i-th process are assinged mark ai.

1. Suppose that the night traffic on the Jadranska street can be modelled by a homoge-
neous Poisson process with intensity 40 vehicles per hour, 10% thereof being lorries
and 90% being cars. Suppose that the types of particular vehicles are independent.

a) Find the probability that in one our, at least one lorry passes the Faculty of
Mathematics and Physics.

b) Suppose that during the first hour of observation, exactly 10 lorries have passed
by. Find the expected number of the cars passing the FMF during the same
period.

c) Suppose that in the first hour of observation, exactly 50 vehicles have passed
by. Find the probability that among these vehicles, there were exactly 5 lorries
and 45 cars.

d) Compute the expected number of cars until the first lorry has passed by.

2. The life time of a light bulb follows the exponential distribution with expectation
200 days. When the bulb blows out, it is replaced immediately by a maintainer.
Meanwhile, another maintainer replaces the bulbs regardless of their condition, ac-
cording to a homogeneous Poisson process with intensity 0

.
01 replacement per day.

Of course, we assume that the bulbs, actually their life times, are independent of
each other.

a) How frequently is a bulb replaced?

b) For a longer period, compute the percentage of the bulbs replaced because of
blowing out and the bulbs replaced because of ‘precaution.’

3. A director is searching for three actors, one man and two women. Men apply ac-
cording to a homogeneous Poisson process with intensity 2 per day, while women
apply according to a homogeneous Poisson process with intensity 1 per day, inde-
pendently of the men. Compute the expected time needed for the director to get
the man as well as the two women. We assume that all candidates are acceptable.
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4. A married couple is searching for a used car. Each one of them is looking up offers
for their favourite brand. The offers for wife’s brand are coming according to a
homogeneous Poisson process with intensity λ, while the offers for husband’s brand
are coming according to a homogeneous Poisson process with intensity µ. The wife
is ready to buy a car when she encounters the third offer for her brand, while the
husband is ready when he encounters the second offer for his brand. The couple
buys a car when either of them is ready to buy. We assume that the offer processes
for both brands are independent.

a) Compute the probability that the couple buys a car according to wife’s choice.

b) Compute the expected time needed to buy a car.

5. Consider two parallel Poisson processes with intensities λ and µ. Find:

� the probability that in the second process, exactly one arrival in occurs before
the first arrival in the first process;

� the expected number of the arrivals in the second process before the first arrival
in the first process.

6. From a given time on, students of financial and general mathematics have an oppor-
tunity to lookup their corrected test papers. The students of finantial mathematics
arrive according to a homogeneous Poisson process with intensity 4 students an
hour, while the students of general mathematics arrive according to a homogeneous
Poisson process with intensity 2 students an hour. Assume that both groups of
students arrive independently of each other.

Suppose that during the first half an hour, exactly one student came to lookup
his/her test paper. Compute the conditional arrival time of the first student of
financial mathematics. The time is measured from the beginning, assuming that
the students are arriving infinitely long in the future.

7. Take two independent Poisson process with intensities λ and µ. Let n ∈ N. Deter-
mine the distribution of the number of arrivals in the first process before the n-th
arrival in the second process.

8. Consider two homogeneous Poisson processes with intensities λ and µ. Denote by
N

(1)
t the number of arrivals up to time t in the first, and with N

(2)
t the number

of arrivals up to time t in the second process. Compute the probability that the
two-dimensional walk

(
N

(1)
t , N

(2)
t

)
reaches the point (i, j).
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Homogeneous Poisson process with general marks

Suppose that each arrival in a homogeneous Poisson process with intensity λ
is given a mark from a set M , chosen according to a distribution µ, where the
marks are independent of each other as well as of the original process. Then
the number of marked arrivals belonging to a set A ⊆ [0,∞)×M follows the
Poisson dostribution with parameter θ = (λm ⊗ µ)(A), where m denotes the
Lebesgue measure.

If µ =

(
a1 a2 · · ·
p1 p2 · · ·

)
, then:

θ = λ
∑
i

pim({t ; (t, ai) ∈ A}) .

If µ is a continuous distribution with density f , then:

θ = λ

∫∫
A

f(s) dt ds .

9. The capital of a bank grows proportionally with time: at time t, the bank has at
units of capital. The bank has to undergo stress tests, which occur according to
a homogeneous Poisson process with intensity λ. The bank passes a stress test
provided that it has at least a certain amount of capital at the moment of the test;
the desired amounts of capitals are random, independent and following a continuous
distribution with density:

f(s) =
4

π(1 + s2)2
.

Compute the probability that the bank will pass all the stress test.
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5 General Poisson Process

Intensity function. Conditioning on the number of arrivals. Behavior with respect to stopping
times.

Let ρ : (0,∞) → [0,∞) be a function. A Poisson process with intensity
function ρ is a counting process characterized by the following two properties:

� For a ≤ b, Nb−Na ∼ Pois

(∫ b

a

ρ(t) dt

)
. Consequently, Nt ∼ Pois

(
R(t)

)
,

where R(t) =
∫ t

0

ρ(s) ds.

� Any restrictions of the process (regarded as a random subset od (0,∞))
to disjoint intervals are independent.

1. A shop is open from 10am to 6pm. Customers arrive in the shop according to a
Poisson process with an intensity function, which equals zero at opening, 4 customers
per hour at noon, 6 customers per hour at 2pm, 2 customers per hour at 4pm and
zero at closing; between any two consequent afore-mentioned times, it is linear.

a) Find the distribution of the number of customers on a given day.

b) Find the probability that no customer arrives until noon.

c) Assume that during the first two opening hours, exactly two customers have
arrived. Find the their expected arrival times.

Conditioning on the number of arrivals

In a Poisson process, given the event that there are exactly n arrivals in a cer-
tain time interval, the conditional distribution of the restriction of the process
to this interval (considered as a random set) matches the distribution of the
set {U1, U2, . . . , Un}, where U1, . . . , Un are independent, following a continuous
distribution with density:

f(t) =


ρ(t)∫ b

a
ρ(s) ds

; a < t < b

0 ; otherwise.

Considering the time interval [0, t], given the event that there are exactly n
arrivals, the random vector of the arrival times (S1, S2, . . . , Sn) follows the
same distribution as the random vector (U(1), U(2), . . . , U(n)) of suitable order
statistics.

2. Consider a Poisson process with intensity function ρ(t) = a/(1 + t). Determine
the distribution of the first arrival time along with its expectation, provided that it
exists.
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3. Latecomers arrive according to a Poisson process with intensity function ρ(t) = e−t,
where t denotes the delay in months.

a) Find the probability that exactly one latecomer appears and that this latecomer
arrives more than two months.

b) Suppose that in fact, exactly one latecomer appears and that this latecomer
arrives more than two months. Find the conditional expected time of their
delay.

4. Let a, λ, δ > 0. Compute the expected number of arrivals in a Poisson process with
intensity function t 7→ a e−λt, which are not followed by another arrival within time
interval of length δ.

General Poisson process and stopping time

Consider a Poisson process with intensity function ρ and let T be a stopping
time.

Given
(
T,P→ \T

)
, the process PT→ is a Poisson process with intensity function

t 7→ ρ(t+ T ).

Equivalently, given
(
T,P→\T

)
, the process P ∩ (T,∞) is a Poisson process with

intensity function t 7→ ρ(t)1(t > T ).

5. Consider a Poisson process with intensity function:

ρ(t) =
1

1 + t
.

Find the distribution of the first two (inter)-arrival times T1 and T2.
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6 Renewal Processes

Basic definitions, asymptotic behavior. Renewal–reward processes. Renewal equation. Renewal
processes with delay.

A renewal process is a generalized counting process with independent
and identically distributed inter-arrival times T1, T2, T3, . . .. Their distri-
bution is called the inter-arrival distribution. We also allow for the
case Ti = 0: in this case, there are multiple arrivals at a suitable time.
Renewal processes with finite expectation of their inter-arrival times sat-
isfy the strong law of large numbers:

Nt

t

a.s.−−−→
t→∞

1

E(T1)
.

1. A shuttle bus operates between the Virgin Beach and a hotel. Due to unpredictable
traffic situation, the return times are distributed uniformly over the interval from
20 minutes to one hour. Assume that they are independent of each other. The time
the bus stays at the Virgin Beach (including disembarkation and embarkation) is
negligible.

a) Compute the long-term number of arrivals of the bus per hour.

b) The Simpsons wanted to catch the bus, but it has just ran away. Therefore,
they continue swimming and return to the bus stop 40 minutes later. Find the
probability that they will wait for less than 20 minutes.

2. Consider again the fire station from Exercise 8 in Section 3: the station receives
emergency calls according to a homogeneous Poisson process with intensity half a
call per hour. Each time, the fire brigade needs certain time to process the call and
prepare for further calls. Meanwhile, the calls are redirected to other fire stations.
The durations of these periods (interventions) are distributed uniformly over the
interval from half an hour to one hour and independent of each other as well as of
the emergency calls. Compute the long-term proportion of redirected calls.
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A renewal–reward process is a renewal process, where each arrival is at-
tached a reward: the reward attached to the i-th arrival will usually be denoted
by Ri and may also be negative. The reward attached to the i-th arrival is
received during the i-th inter-arrival interval, i. e., between times Si−1 and
Si. Not all amount needs to be received once at a time: in can be received
gradually and not necessarily monotonously. More formally, denoting by Wt

the total amount of the rewards received up to time t, we have:

WSi −WSi−1
= Rt .

Assume that the dynamics of the receivement of the rewards along with the
corresponding inter-arrival times are independent and identically distributed.
Denote by R+

i the maximal absolute value of a partially received reward at-
tached to the i-th arrival, that is, Ri = supSi−1≤t≤Si |Wt−WSi−1

|; observe that
|Ri| ≤ R+

i . Then this random process obeys the following strong law of large
numbers:

Wt

t

s.g.−−−→
t→∞

E(R1)

E(T1)
,

provided that E(T1) <∞ in E(|R1|) <∞.

3. Ben has got a gas oven, which is inspected every now and then, according to a
renewal process with inter-arrival time distributed uniformly over the interval from
one year to two years and a half. If the inspectors find out that maintainance of the
oven has not been performed for more than one year, Ben has to pay a fine of 105
euros. Ben’s strategy is to perform maintainance each time exactly one year after
the visit of the inspectors. Compute the long-term amount of fine Ben has to pay
per year.

4. An alternating renewal process spends each moment of its time in one of two possible
states. Every now and then, it jumps from one state to another. The durations of
all stays (in the first or the second state) are independent of each other. The
durations of all stays in State 1 are identically distributed with expectation µ1, and
the durations of all stays in State 2 are identically distributed with expectation µ2.
Find the long-term proportion of the time the process spends in State 1.

5. Monica is selling a certain article by telephone. Up to time t ≤ 1/2, she manages to
persuade a customer to buy the article with probability 3(t− t2). For t > 1/2, that
probability remains at 3/4 (i. e., after time 1/2, everything is in vain). Once she
manages to persuade the customer, she hangs up and start dialing the next customer
immediately. However, she does the same if she does not manage to persuade the
customer up to time τ .

Find the value of τ which maximizes the long-term number of sold articles.

6. Every now and then at a certain point at a fair, all the visitors being there are given
a prize. The prize sharings form a renewal process with inter-arrival distribution
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being uniform over the interval from 20 to 40 minutes. At time zero, Tony notices
that prizes are being shared, rushes to the spot, but he is too late. Then he waits
until the next sharing, but at most for 30 minutes: after that time, he gets tired of
waiting and moves to another place. When the next sharing takes place, he rushes
to the spot again, but he is too late. Then he waits again for a prize, but at most for
30 minutes. The process is repeated until Tony eventually obtains a prize. Denote
by T the time when Tony obtains a prize. Compute E(T ), assuming that the fair is
open infinitely long.

The Lebesgue–Stieltjes integral of a measurable function h : R → R over
function F : R → R, which is assumed to be either (not necessarily strictly)
increasing or with finite total variation, is the integral of h over the Lebesgue–
Stieltjes measure, which corresponds to the function h:∫

A

h dF :=

∫
A

h(x) dF (x) :=

∫
A

h dµ ,

The underlying (positive or signed) Riemann–Stieltjes measure µ is determined
by:

µ
(
(a, b)

)
= lim

x↑b
F (x)− lim

x↓a
F (x)

for all a ≤ b. In particular,

µ({a}) = lim
x↓a

F (x)− lim
x↑a

F (x) =: δF (a)

and µ
(
[a, b]

)
= limx↓b F (x)− limx↑a F (x).

If h is continuous and F continuously differentiable on the interval (a, b) (which
can be infinite), the Lebesgue–Stieltjes integral reduces to the generalized Rie-
mann integral:∫

(a,b)

h dF =

∫
(a,b)

h(x) dF (x) =

∫ b

a

h(x)F ′(x) dx .

Moreover, ∫
{a}

h dF = h(a) δF (a) .

Furthermore, for each random variable with cumulative distribution function
F ,

E
[
h(X)

]
=

∫
R
h dF .
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The renewal function M(t) := E(Nt) of a renewal process satisfies the re-
newal equation:

M(t) = F (t) +

∫
[0,t]

M(t− s) dF (s) ,

where F is the cumulative distribution function of the inter-arrival distribution.
If the latter is continuous with density f , we may write:

M(t) = F (t) +

∫ t

0

M(t− s) f(s) ds .

The Laplace–Stieltjes transform of a function F : [0,∞)→ R is the func-
tion given by:

F̂ (z) =

∫
[0,∞)

e−zt dF (t) .

where we set F (t) = 0 for t < 0. Basic Laplace–Stieltjes transforms:

F (t) F̂ (z)

1 1

tr
r!

zr

tr eαt
r! z

(z − α)r+1∫ t

0

sr eαs ds
r!

(z − α)r+1∫
[0,t]

eαs dG(s) Ĝ(z − α)

F (t) F̂ (z)

t

F (t)

a

1

e−az

t

F (t)

a b

1
e−az − e−bz

(b− a)z

G(t− a)1(t ≥ a) ; a ≥ 0 e−az Ĝ(z)

The Laplace transform of (the distribution of) a [0,∞)-valued random variable
X is defined to be the Laplace–Stieltjes transform of its cumulative distribution
function (according to the convention FX(x) = P(X ≤ x)). Or, alternatively,
this is the function mapping z into E

[
e−zX

]
.
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The Stieltjes-type convolution of functions F and G : [0,∞)→ R is defined
by:

(F ? G)(t) :=

∫
[0,t]

F (t− u) dG(u) =
∫

[0,t]

G(t− u) dF (u) = (G ? F )(t) ,

where again we set F (t) = G(t) = 0 for t < 0. This allows us to rewrite the
renewal equation in the following neat form:

M = F +M ? F .

The Stieltjes-type convolution is commutative, associative and bilinear.

If F and G are the cumulative distribution functions of independent [0,∞)-
valued random variables, F ?G is the cumulative distribution function of their
sum.

The Laplace–Stieltjes transform of the Stieltjes-type convolution is the product
of the Laplace–Stieltjes transforms of the factors:

F̂ ? G = F̂ Ĝ .

Consequently, the Laplace transform of a sum of independent random variables
is the product of the transforms.

As a result, the Laplace–Stieltjes transform M̂ of a renewal function M satisfies
the equation M̂ = F̂ + M̂F̂ and therefore equals:

M̂(z) =
F̂ (z)

1− F̂ (z)
.

7. Determine the renewal function of the renewal process consisting of all even arrivals
of a homogeneous Poisson process with intensity λ.

8. Determine the renewal function of the renewal process with inter-arrival time being
zero with probability p and (conditionally) following the exponentional distribution
Exp(λ) with probability 1− p.
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Delayed renewal processes

These processes are an extension of the renewal processes obtained by omitting
the assumption that T1 follows the same distribution as the other inter-arrival
times. The strong law of large numbers:

Nt

t

s.g.−−−→
t→∞

1

E(T2)
.

remains true provided that T1 is almost surely finite (and, of course, that the
other inter-arrival times have finite expectation).

The renewal function of a delayed renewal process satisfies the following renewal
equation:

M(t) = G(t) +

∫
[0,t]

M(t− s) dF (s) ,

where G denotes the cumulative distribution function of the first arrival time,
while F denotes the cumulative distribution function of subsequent inter-arrival
times. Consequently, the Laplace–Stieltjes transform of the renewal function
equals:

M̂(z) =
Ĝ(z)

1− F̂ (z)
.

9. A novice policeman is looking for offenders, which arrive according to a homoge-
neous Poisson process with intensity λ. He overlooks the first one and catches all
subsequent ones. Denote by Nt the number of offenders caught by the policeman
up to time t. Compute E(Nt).

10. In a small town, there is a bank with only one counter. Customers arrive to the bank
according to a homogeneous Poisson process with intensity µ. However, a potential
customer arriving to the bank enters the bank only if there is no other customer
at the counter; otherwise, they leave the bank and never return. Assume that the
service time at the counter follows the exponential distribution with parameter λ,
and that the service times are independent of each other as well as of the arrivals
of the customers.

a) When the bank is opened, there is no customer yet. Compute the renewal
function of the corresponding delayed renewal process of the customers that
enter the bank.

b) Find the long-term intensity of the customers entering the bank.

c) Find the long-term proportion of the customers which enter the bank among
all customers that arrive to the bank.

11. Policeman Roy starts to serve in place A. When he is there, a supervisor meets
him every now and then according to a homogeneous Poisson process with intensity
one arrival per month. When the supervisor meets Roy, he redeploys him to place
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B with probability 1/2. When Roy is there, a supervisor meets him according to
a homogeneous Poisson process with intensity one arrival per two months. Again,
when the supervisor meets Roy, he redeploys him to place A with probability 1/2.
Assume that the decisions on redeployment are independent of each other as well
as of the arrival times.

Show that the arrivals of supervisors that Roy meets form a delayed renewal process,
and compute the renewal measure.

12. Determine the renewal measure of the process where the first arrival time follows the
uniform distribution over the interval from 0 to a, while the subsequent inter-arrival
times follow the exponential distribution with parameter λ.

13. A counting process represented by a set of arrivals P is stationary if the process
P t→ follows the same distribution as P for all t ≥ 0. Suppose that a delayed renewal
process is stationary. Given the distribution of its inter-arrival times T2, T3, . . ., find
the distribution of T1.



SOLUTIONS



M. RAIČ: SOLVED PROBLEMS IN COUNTING PROCESSES 2

-( -)



M. RAIČ: SOLVED PROBLEMS IN COUNTING PROCESSES 3

1 Selected Topics in Probability Theory

1. a) For N taking values in N0, we have:

N =
∞∑
n=0

1(N > n) ,

implying the desired result.

b) By the previous formula, we have:

E(N) =
∞∑
n=0

2

(n+ 2)(n+ 3)
= 2

∞∑
n=0

[
1

n+ 2
− 1

n+ 3

]
= 1 .

Remark. The expectation can also be computed by means of point probabilities,
but this is much more complicated: first, for n ∈ N, we have to compute P(N =
n) = P(N > n − 1) − P(N > n) = 4

(n+1)(n+2)(n+3)
, then we have to compute

4
∑∞

n=1
n

(n+1)(n+2)(n+3)
.

2. a) Observe that:

T =

∫ T

0

dt =

∫ ∞
0

1(t < T ) dt =

∫ ∞
0

1(T > t) dt .

The desired result now follows from Fubini’s theorem.

b) By the previous formula.

E(T ) =
∫ ∞

0

dt

(1 + t)3
= − 1

2(1 + t)2

∣∣∣∣∞
0

=
1

2
.

Remark. Clearly, the expectation can be computed by means of density:

fT (t) =
3

(1 + t)4
,

leading to:

E(T ) = 3

∫ ∞
0

t

(1 + t)4
dt = 3

∫ ∞
0

(
1

(1 + t)3
− 1

(1 + t)4

)
dt =

= −
(

3

2(1 + t)2
− 1

(1 + t)3

)∣∣∣∣∞
0

=
1

2
.

However, the computation is again more complicated.

3. Denote by S the number of sixes and by N the number of tosses. Then the condi-
tional distribution of S given N is binomial Bin(N, 1/6) and therefore:

P(S = 0 | N) =

(
5

6

)N
and E(S | N) =

N

6
.
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Since:

N ∼
(

1 2 3
1/2 1/4 1/4

)
,

we finally find that:

P(S = 0) =
1

2
· 5
6
+

1

4
· 25
36

+
1

4
· 125
216

=
635

864
.
= 0

.
735 ,

E(S) =
1

2
· 1
6
+

1

4
· 2
6
+

1

4
· 3
6
=

7

24
.
= 0

.
292 .

4. Recall that N ∼ Pois(λ) satisfies E(N) = var(N) = λ. Thus, E(X | T )
= var(X | T ) = T 2. As a result,

E(X) = E
[
E(X | T )

]
= E(T 2) .

For m ∈ N0, compute

E(Tm) = λ

∫ ∞
0

tme−λt dt =
1

λm

∫ ∞
0

xme−x dx =
m!

λm
,

leading to

E(X) =
2

λ2
.

The variance can be computed by at least two methods. One can go directly:

var(X) = E(X2)−
(
E(X)

)2
= E

[
E(X2 | T )

]
− 4

λ4

Observing that

E(X2 | T ) = var(X | T ) +
(
E(X | T )

)2
= T 2 + T 4 ,

we eventually find that

var(X) = E(T 2) + E(T 4)− 4

λ4
=

2

λ2
+

20

λ4
.

Alternatively, one can apply the decomposition of variance:

var(X) = var
[
E(X | T )

]
+ E

[
var(X | T )

]
=

= var(T 2) + E(T 2) =

= E(T 4)−
(
E(T 2)

)2
+ E(T 2) =

=
20

λ4
+

2

λ2
.

As expected, the result is the same as before.

5. All random variables except the ones in d), g) and i) are stopping times.
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6. Write

S =
∞∑
n=1

Xn 1(T ≥ n) .

Since T is a stopping time with respect to Z0, Z1, . . ., the event {T ≥ n} = {T >
n− 1} can be deterministically expressed in terms of Z0, . . . , Zn−1 and is therefore
independent of Xn. So we conclude that:

E(S) =
∞∑
n=1

E(Xn)P(T ≥ n) = µ

∞∑
n=1

P(T ≥ n) = µE(T ) .

(see Exercise 1).

7. Let T be the number of tosses. This random variable is distributed geometrically
Geom

(
1
2

)
, so that the expected number of tosses equals 2.

For n = 1, 2, 3, . . ., define Xn := 1 if the coin comes up heads in the n-th toss and
Xn := 0 otherwise. Next, let Z0 := 0 and Zn := Xn for n = 1, 2, 3, . . . One can
easily verify the validity of the conditions stated in the preceding exercise. Since
E(Xi) =

1
2
, the expected number of heads equals 1

2
· 2 = 1.

Alternatively, one can make use of the fact that the number of heads equals the total
number of tosses minus the number of tails. Since the coin comes up tails exactly
once almost surely, the expected number of heads should be 2− 1 = 1, which is, of
course, the same as before.

8. We have ST = 1 (deterministically), so that E(ST ) = 1. However, since T + 1 ∼
Geom

(
1
2

)
, we have E(T ) =

2
1
2

− 1 = 3. Next, we have Sn = X1 + X2 + · · · + Xn,

where Xi is the indicator of the event that in the i-th toss, the coin comes up heads.
Since E(Xi) = 1

2
, Wald’s equation does not hold. This does not contradict the

statement because the random variable T is not a stopping time.

9. First method. Denote by T the number of all tosses and consider the following three
hypotheses:

H1 = {the coin comes up heads in the first toss} .
H2 = {first toss tails, second toss heads} .
H3 = {tails in the first two tosses} .

Under H3, we have T = 2, so that E(T | H3) = 2. Under H1 or H2, the further
development is again a sequence of independent coin tosses. Therefore, E(T | H1) =
1 + E(T ) and E(T | H2) = 2 + E(T ). Putting everything together, we find that:

E(T ) =
1

2

(
1 + E(T )

)
+

1

4

(
2 + E(T )

)
+

1

4
· 2 ,

leading to E(T ) = 6.

The expected number of tails can be deduced from Wald’s equation similarly as in
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Exercise 7, for T is a stopping time. It equals 6 · 1
2
= 3.

Second method.1 We shall say that the coin tosses basic tails if this occurs either in
the first toss or if it is preceded by heads. Then the number of tails that are tossed
up to and including first two consequent tails equals the number of the basic tails up
to (and including) the first basic tails followed by tails, plus one. From the strong
time-homogeneous Markov property for the Bernoulli sequence (see Exercise 4 in
Section 2), it follows that for each n ∈ N, the n-th basic tails is followed by heads
with probability 1/2 and by tails with probability 1/2 (the number of tosses up to
the n-th basic tails is a stopping time). Moreover, this also holds conditionally given
the entire sequence up to the n-th basic tails. Thus, considering each basic tails as
a trial and each basic tails followed by another tails as a successful trial, we obtain
a Bernoulli sequence with success probability 1/2. Therefore, the number of basic
tails up to the first basic tails followed by tails follows the geometric distribution
Geom(1/2), having expectation 2. As a result, the expected number of tails up to
two consequent tails equals 2 + 1 = 3.

To compute the expected number of all tosses until two consequent tails, we can
apply Wald’s equation in the opposite direction as in the first method, leading to
E(T ) = 3/(1/2) = 6.

10. Since E(Xi) = 0, Wald’s equation yields E(S) = 0, so that var(S) = E(S2). Write:

S2 =
∞∑
n=1

(S2
n − S2

n−1)1(T ≥ n) =
∞∑
n=1

(2XnSn−1 +X2
n)1(T ≥ n) ,

where Sn = X1 +X2 + · · ·+Xn. Thanks to independence, we have:

var(S) =
∞∑
n=1

(
2E(Xn)E

[
Sn−1 1(T ≥ n)

]
+ E(X2

n)P(T ≥ n)
)
=

= σ2

∞∑
n=1

P(T ≥ n) =

= σ2 E(T ) .

Without the assumption E(Xi) = 0, the result does not necessarily hold: suppose
that a fair coin is tossed until tails come up (the tosses are independent). Denote
by T the number of all tosses. Let Xn = 1 if tails come up in the n-th toss, and
Xn = 0 otherwise. Then we have S = 1 and furthermore var(S) = 0, E(T ) = 2 and
σ2 = 1/4, contradicting the result.

11. a) According to the hint, we apply the preceding exercise 6 to random variables
Yi := Xi− µ. Letting U := Y1 + · · ·+ YT = S − µT , the random variables Y1, Y2, . . .
are independent with E(Yi) = 0. Putting

Z0 := T , Z1 := Y1 , Z2 := Y2 , . . .

1The idea is due to Timotej Akrapovič.
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and considering T as an N0-valued random variable, T is (trivially) a stopping
time with respect to the sequence Z0, Z1, . . . In addition, Xn is independent of the
sequence Z0, Z1, . . . , Zn−1 for all n ∈ N. From Wald’s equation, we have E(U) = 0;
from the preceding exercise, it follows that var(U) = E(U2) = σ2 E(T ).

Now we turn to S. We use var(S) = E(S2) −
(
E(S)

)2
. Again by Wald’s equation,

we have E(S) = µE(T ). Therefore,

var(S) = E(U2) + 2µE(UT ) + µ2 E(T 2)−
(
µE(T )

)2
=

= σ2 E(T ) + 2µE(UT )− µ2 var(T ) .

Next, E(UT ) = E
[
E(UT | T )

]
= E

[
E(U | T )T

]
. Since the random variables

Y1, Y2, . . . are independent of T , we have E(Yn | T ) = E(Yn) = 0 for all n and
consequently E(U | T ) = 0, leading to E(UT ) = 0. As a result, we conclude that

var(S) = σ2 E(T ) + µ2 var(T ) .

Remark : the first term represents the variance unexplained by T , i. e., E
[
var(S | T )

]
,

and the second term is the explained variance, i. e., var
[
E(S | T )

]
.

b) From
E
[
zS
∣∣ T = n

]
= E(zSn) =

[
GX(z)

]n
,

it follows that E(zS | T ) =
[
GX(z)

]T
, leading to:

E(zS) = GT (GX(z)) .

If the assumption that T is independent of the sequence X1, X2, . . . is replaced by
the weaker assumption that T is a stopping time with respect to X0, X1, X2, . . .,
none of the results necessarily holds. As a counter-example, we can, similarly as
in the preceding exercise, take a fair coin, which is tossed until it comes up heads
(assuming as usual that all tosses are independent). Again, let T be the number of
all tosses. Next, let Xn = 1 if the coin comes up heads in the n-th toss, and Xn = 0
otherwise (this makes S = 1). As a N0-valued random variable, T is a stopping
time with respect to the sequence 0, X1, X2, . . . However, it is not difficult to check
that none of the afore-mentioned results holds in this case.

12. a) From the transformation formula and marginal densities, it follows that the dif-
ferences Xt −Xs, t 6= s, are continuously distributed with density

g(w) =

∫ ∞
−∞

f(x)f(x− w) dx .

As a result, P(Xt −Xs = 0) = P(Xt = Xs) = 0 for any t 6= s. However, the event
that there exist t 6= s with Xt = Xs is the union of the underlying events over the
collection of all possible pairs t 6= s, which is countable (in fact, it suffices only
to take t < s). Therefore, the latter union has probability zero. The event that
all random varables Xt are distinct is the complement of that union and therefore
occurs with probability 1.
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b) Denoting by Rt the event that a record value occurs at time t, observe that this
event is uniquely determined by the ordering of the random variables X1, X2, . . . , Xt.
From the preceding part, it follows that it suffices only to consider the t! orderings
where X1, . . . , Xn are all distinct.

The random vector (X1, X2, . . . , Xt) is continuously distributed with density

ft(x1, x2, . . . , xt) = f(x1)f(x2) · · · f(xn) .

If π is a permutation of t elements, then, by the transformation formula, the random
vector (Xπ(1), Xπ(2), . . . , Xπ(t)) has density

(y1, y2, . . . , yt) 7→ ft(yπ−1(1), yπ−1(2), . . . , yπ−1(t)) =

= f(yπ−1(1))f(yπ−1(2)) · · · f(yπ−1(t)) =

= f(y1)f(y2) · · · f(yt) .

This means that the random vector (Xπ(1), Xπ(2), . . . , Xπ(t)) follows the same dis-
tribution as (X1, X2, . . . , Xt). Such random variables are called exchangeable. Now
it follows that all t! orderings of random variables X1, X2, . . . , Xt, where they are
all distinct, are equally likely. The event Rt corresponds to (t − 1)! out of these
orderings. Therefore, P(Rt) = 1/t.

c) What we need to prove is that

P
(
Rt1 ∩Rt2 ∩ · · · ∩Rtk

)
= P

(
Rt1

)
P
(
Rt2

)
· · ·P

(
Rtk

)
=

1

t1
· 1
t2
· · · 1

tk

for all 1 ≤ t1 < t2 < · · · < tk. Similarly as in the preceding part, observe that the
event Rt1 ∩ Rt2 ∩ . . . ∩ Rtk is uniquely determined by the ordering of the random
variables X1, X2, . . . , Xtk . Again, it suffices only to consider the tk! orderings where
their values are all distinct; recall also that they are equally likely. Now there are
at least two methods to proceed.

First method : simply count all the orderings which are due to the event Rt1 ∩
Rt2 ∩ . . . ∩ Rtk . The orderings of the random variables X1, X2, . . . , Xtk can be
represented by arrangements of balls with labels 1, 2, . . . , tk in a row: the greater the
value of a random variable, the more to the right the underlying ball is positioned.
The orderings which are due to the event Rt1 ∩ Rt2 ∩ . . . ∩ Rtk correspond to the
arrangements with ball ti positioned to the right of all balls 1, 2, . . . , ti − 1 for each
i = 1, 2, . . . , k. These arrangements can be generated as follows: first, arrange balls
1, 2, . . . , t1 − 1; there are 1 · 2 · · · (t1 − 1) ways to do it. Put ball t1 to the right end.
Now insert balls t1 +1, t1 +2, . . . , t2− 1 among the t1 balls which have already been
arranged; this can be done in (t1 + 1)(t1 + 2) · · · (t2 − 1) ways, of course regardless
of the arrangement of the first t1 balls. To the right end, put ball t2. Continue this
way: after we have arranged ti−1 balls, insert balls ti−1+1, ti−1+2, . . . , ti−1 among
them, which can be done in (ti−1 + 1)(ti−1 + 2) · · · (ti − 1) ways; then put ball ti to
the right end. Thus, we find that the desired number of orderings equals

1 · 2 · · · (t1 − 1)× (t1 + 1)(t1 + 2) · · · (t2 − 1)× (t2 + 1)(t2 + 2) · · · (t3 − 1)× · · ·
· · · × (tk−1 + 1)(tk−1 + 2) · · · (tk − 1) ,



M. RAIČ: SOLVED PROBLEMS IN COUNTING PROCESSES 9

leading to

P
(
Rt1 ∩Rt2 ∩ . . . ∩Rtk

)
=

1

t1t2 · · · tk
,

completing the proof.

Second method : consider the conditional probability of the event Rtk given a certain
ordering of the random variables X1, X2, . . . , Xtk−1. There are tk possible ways to
extend such an ordering to the ordering of the random variables X1, X2, . . . , Xtk ,
all of them being equally likely and exactly one of them being due to the event Rtk .
This means that the conditional probability of Rtk given any ordering of the random
variables X1, X2, . . . , Xtk−1 equals 1/tk.

Since the event Rt1 ∩ Rt2 ∩ · · · ∩ Rtk−1
is a disjoint union of the events associated

to the suitable orderings of the random variables X1, X2, . . . , Xtk−1, the conditional
probability of the event Rtk given Rt1 ∩ Rt2 ∩ · · · ∩ Rtk−1

also equals 1/tk. By
conditioning, we obtain

P
(
Rt1 ∩Rt2 ∩ · · · ∩Rtk

)
=

= P
(
Rt1

)
P
(
Rt2

∣∣ Rt1

)
P
(
Rt3

∣∣ Rt1 ∩Rt2

)
× · · ·

· · · × P
(
Rtk

∣∣ Rt1 ∩Rt2 ∩ · · · ∩Rtk−1

)
=

=
1

t1
· 1
t2
· · · 1

tk
,

which is the same as before.

Remark. The argument given above shows that the event Rt is independent of the
ordering of the random variables X1, X2, . . . , Xt−1. However, this does not imply
the independence of the random vector (X1, X2, . . . , Xt−1), which is not true.

d) Denoting by It the indicator of the event Rt, i. e.:

It = 1Rt =

{
1 ; a record value occurs at time t
0 ; no record value occurs at time t

,

we have Nt = I1 + I2 + · · · + It and therefore E(It) = 1/t and var(It) = (t− 1)/t2.
Hence,

E(Nt) = E(I1) + E(I2) + · · ·+ E(It) = 1 +
1

2
+ · · ·+ 1

t
∼ ln t .

If certain events are independent, so are their indicators. Therefore,

var(Nt) = var(I1) + var(I2) + · · ·+ var(It) =
1

22
+

2

32
+ · · ·+ t− 1

t2
∼ ln t .

e) The event {S > t} is equivalent to the event that X1 is highest among X1, X2, . . .
. . . , Xt and has probability 1/t. Therefore, P(S = ∞) = limt→∞ P(S > t) = 0. For
t = 2, 3, 4, . . ., we compute:

P(S = t) = P(S > t− 1)− P(S > t) =
1

t(t− 1)
.
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Hence E(S) =
∑∞

t=2
1
t−1

=∞.

Remark. Although the expectation is infinite, the conditional expectation given
the first measurement X1 is finite – we have:

E(S | X1) = 1 +
1

1− F (X1)
,

where F denotes the cumulative distribution function of the random variables
X1, X2, . . . (given X1, the number of further attempts needed to overcome the value
X1 follows the geometric distribution Geom(1−F (X1))). However, integration into
unconditional expectation yields an infinite result: denoting by f = F ′ the density,
we obtain:

E(S) = E
[
E(S | X1)

]
=

∫ ∞
−∞

1

1− F (x)
f(x) dx .

and substitution t = F (x) yields:

E(S) =
∫ 1

0

1

1− t
dt =∞ .

f) The conditional distribution of the random variable XS(y) given {S(y) = t} is
the same as the conditional distribution of the random variable Xt given {X1 ≤
y,X2 ≤ y, . . . , Xt−1 ≤ y,Xt > y}. Because of independence, the latter event can be
replaced by {Xt > y}. However, the conditional distribution of Xt given Xt > y is
independent of t.
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2 Counting Processes

1. a) Denoting by p the probability of an arrival to occur at a given time, we have
Nt ∼ Bin(n, p) and Nt −Ns ∼ Bin(t− s, p). As a result, we have:

� For independent Bernoulli random variables I1, I2, . . . , It with P(Yk = 1) = p,
we have I1 + I2 + · · ·+ It ∼ Bin(t, p).

� For independent random variables X ∼ Bin(k, p) and Y ∼ Bin(l, p), we have
X + Y ∼ Bin(k + l, p).

b) These random variables are independent.

c) By the fundamental equivalence,

P(S1 ≤ t) = P(Nt ≥ 1) = 1− P(Nt = 0) = 1− (1− p)t .

The formula holds for t = 0, 1, 2, . . ., so for all t ∈ N, we have:

P(S1 = t) = P(S1 ≤ t)− P(S1 ≤ t− 1) = p(1− p)t−1 .

Therefore S1 ∼ Geom(p).

d) More generally,

P(Sn = t) = P(Sn ≤ t, Sn > t− 1) = P(Nt ≥ n,Nt−1 < n) =

= P(Nt−1 = n− 1, an arrival occurs at time t) =

= P(Nt−1 = n− 1)P(an arrival occurs at time t) =

=

(
t− 1

n− 1

)
pn(1− p)t−n .

Hence Sn ∼ NegBin(n, p).

2. By the fundamental equivalence, the n-th arrival time satisfies:

FSn(t) = P(Sn ≤ t) = P(Nt ≥ n) = P(Nt + 1 > n) =
(
1− e−t

)n
.

Therefore,

E(S1) =

∫ ∞
0

e−t dt = 1 ,

E(S2) =

∫ ∞
0

[
1−

(
1− e−t

)2
]
dt =

∫ ∞
0

(
2 e−t − e−2t

)
dt =

3

2
.

3. First method. Clearly, Nt ∼ Bin(n, t). The fundamental equivalence {Sk ≤ t} =
{Nt ≥ k} yields the cumulative distribution function of the random variables Sk:

FSk(t) =
n∑
l=k

(
n

l

)
tl(1− t)n−l ; 0 ≤ u ≤ 1 .
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Differentiating, we obtain the probability density function (minding the last term):

fSk(t) =
n∑
l=k

(
n

l

)[
l tl−1(1− t)n−l − (n− l)tl(1− t)n−l−1

]
=

=
n∑
l=k

(
n

l

)
l tl−1(1− t)n−l −

n−1∑
l=k

(
n

l

)
(n− l)tl(1− t)n−l−1 =

=
n∑
l=k

n!

(l − 1)! (n− l)!
tl−1(1− t)n−l −

n−1∑
l=k

n!

l! (n− l − 1)!
tl(1− t)n−l−1 =

=
n∑
l=k

n!

(l − 1)! (n− l)!
tl−1(1− t)n−l −

n∑
j=k+1

n!

(j − 1)! (n− j)!
tj−1(1− t)n−j =

=
n!

(k − 1)! (n− k)!
tk−1(1− t)n−k .

This is the beta distribution: Sk ∼ Beta(k, n− k + 1).

Second method. The density can be easily obtained by the following “physical”
thought, which is, of cource, not entirely mathematically correct: the event {Sk ∈
[t, t + dt]} means that exactly k − 1 guests arrived up to time t, exactly one guest
arrived within the infinitesimal time interval from t to t+dt, white the other n− k
guests arrived from time t+ dt on. Therefore, we have:

P(Sk ∈ [t, t+ dt]) =
n!

(k − 1)! 1! (n− k)!
tk−1 dt (1− t)n−k ,

leading to the density:

fSk(t) =
n!

(k − 1)! (n− k)!
tk−1(1− t)n−k ,

which is the same as before. However, to make it mathematically correct, take
0 ≤ t < t+ h ≤ 1. The fundamental equivalence implies:

FSk(t+ h)− FSk(t) = P(Nt+h ≥ k)− P(Nt ≥ k) .

Since {Nt ≥ k} ⊆ {Nt+h ≥ k}, we also have:

FSk(t+ h)− FSk(t) = P(Nt < k,Nt+h ≥ k) =

= P(Nt < k,N1 −Nt+h ≤ n− k) =

=
k−1∑
i=0

n∑
j=k

P(Nt = i, Nt+h −Nt = j − i, N1 −Nt+h = n− j) =

=
k−1∑
i=0

n∑
j=k

n!

i! (j − i)! (n− j)!
tihj−i(1− t− h)n−j .

Observe that the exponent at h is always at least 1. Dividing by h and taking the
limit as h → 0, the left hand side is exactly the right derivative of the function
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FSk at t. In the right hand side, however, only the terms with h1 survive. As the
only such term occurs at i = k− 1 and j = k, the above-mentioned right derivative
equals:

n!

(k − 1)! (n− k)!
tk−1(1− t)n−k ,

which is the same as before. It remains to prove that the same holds for the left
derivative. Thus, take 0 ≤ t− h < t ≤ 1. Similarly as before, one can compute:

FTk(t)− FTk(t− h) =
k−1∑
i=0

n∑
j=k

n!

i! (j − i)! (n− j)!
(t− h)ihj−i(1− t)n−j .

and the limit as h tends to zero is the same as before. This means that the function
FSk is differentiable on the whole interval (0, 1) and one can easily check that the
derivative is continuous. Clearly, FSk itself is also continuous. As a result, we
conclude that:

fSk(t) =
n!

(k − 1)! (n− k)!
tk−1(1− t)n−k .

4. a) The independence of P t→ and P→\t follows from the independence of the events
that an arrival occurs at a given time Finally, the fact that P t→ follows the same
distribution as P follows from the fact that it shares all the properties which define
P (the distribution is uniquely determined by these properties).

b) The process PT→ takes its values in the set ℘(N), the power set of the set of N.
The process P→\T takes its values in the set ℘fin(N), the set of all finite subsets of
N. Take arbitrary measurable sets A ⊆ ℘fin(N) and B ⊆ ℘(N) and arbitrary t ∈ N.
Consider the following conditional probability:

P
(
PT→ ∈ B

∣∣ T = t,P→ \T ∈ A
)
= P

(
P t→ ∈ B

∣∣ T = t,P→ \t ∈ A
)

(which makes sense if P
(
T = t,P→\t ∈ A

)
> 0). However, the event {T = t} is

uniquely determined by P→\t. This means that it can be expressed as {P→ \t ∈ Ct}
for some set Ct ⊆ ℘({1, . . . , t}). From the ordinary time-homogeneous Markov
property, it follows that:

P
(
PT→ ∈ B

∣∣ T = t,P→\T ∈ A
)
= P

(
P t→ = B

∣∣ P→\t = A ∩ Ct
)
=

= P
(
P t→ = B

)
=

= P
(
P = B

)
,

which yields the desired result.

5. The first part (memorylessness) can be proved in at least two ways.
First method. By direct calculation, we verify that:

P(T = t+ s | T > t) =
P(T = t+ s)

P(T > t)
=
p(1− p)t+s−1

(1− p)t
= p(1− p)s−1 = P(T = s) .
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Second method. Consider the counting process from the previous exercise and let
T = S1 be the first arrival time. The event {T > t}matches the event that no arrival
occurs up to and including time t. Denoting again by P the set of arroval times and
by T ′ the first arrival time in the process P t→, we find that in the event {T > t},
we have T ′ = T − t; therefore, in this event, the events {T = t + s} and {T ′ = s}
match, i. e., their intersections with {T > t} are equal. Since the event {T > t} can
be deterministically expressed in terms of P→\t, T ′ must be independent of {T > t}
and follows the same distribution as T ; that is the conditional distribution of T ′

given {T > t} is the same as the unconditional distribution of T . This completes
the proof.

Let T be a memoryless random variable. This can be also written in the following
form:

P(T > t+ s | T > t) = P(T > s)

for all s ∈ N0 and also for all t ∈ N0. In other words,

P(T > t+ s) = P(T > t)P(T > s) .

As a special case, we have:

P(T > t+ 1) = P(T > t)P(T > 1)

and denoting q := P(T > 1), it follows that:

P(T > t) = qt ,

where 0 < q < 1: the case q = 0 is ruled out because the conditional probability
in (∗) must make sense; in the case q = 1, however, the probability of a decreasing
sequence of events would yield P(T ∈ N) = 0. Finally, we obtain:

P(T = t) = P(T > t− 1)− P(T > t) = (1− q)qt−1 ,

which means that T indeed follows a geometric distribution.

6. a) This follows from the fundamental equivalence {Sn ≤ t} = {Nt ≥ n}. As a
result, the process PSn→ is also independent of

(
Sn,P→ \Sn

)
and follows the same

distribution as P .

b) The n-th inter-arrival time of the process P corresponds to the first inter-arrival
time of the process PSn−1→. From d), it follows that Tn follows the same distribution
as T1 and is independent of (Sn−1,PSn−1→) and therefore of (T1, . . . , Tn−1). Thus,
the inter-arrival times Tn are independent with the geometric distribution Geom(p).
As a result, we have:

� For T1, T2, . . . , Tn independent with the geometric distribution Geom(p), we
have T1 + T2 + · · ·+ Tn ∼ NegBin(n, p).

� For independent random variables X ∼ NegBin(k, p) and Y ∼ NegBin(l, p),
we have X + Y ∼ NegBin(k + l, p).

c) The difference Sn − Sm corresponds to the (n −m)-th inter-arrival time of the
process PSm→; thus, it follows the same distribution as Sn−m, that is, negative
binomial NegBin(n−m, p).



M. RAIČ: SOLVED PROBLEMS IN COUNTING PROCESSES 15

3 Homogeneous Poisson Process

1. a) The expected time from the opening until the start of examination is exactly the
third arrival time S3, which follows the gamma distribution Gama(3, 6); its expected
value equals 3 · 1/6 = 1/2, i. e., half an hour.

b) P(N1 < 3) = Pois(6){0, 1, 2} =
2∑

k=0

6k e−6

k!
= 25 e−6 .

= 0
.
0620.

2. a) Suppose first that s > t. Then Ns −Nt is independent of Nt. Therefore,

cov(Nt, Ns) = cov(Nt, Nt) + cov(Nt, Ns −Nt) = var(Nt) = λt .

In the general case, we have cov(Nt, Ns) = λmin{t, s}.

b) corr(Nt, Ns) =
min{t, s}√

ts
=

√
min{t, s}
max{t, s}

.

c) λ


t1 t1 t1 · · · t1
t1 t2 t2 · · · t2
t1 t2 t3 · · · t3
...

...
...

. . .
...

t1 t2 t3 · · · tn

.

3. The player wins the game if the bell rings exactly once between times s and 1. Since
the number of the rings is Poisson Pois

(
λ(1− s)

)
, the winning probability is:

λ(1− s) e−λ(1−s) .

b) The function t 7→ t e−t is increasing on [0, 1], attains its maximal value e−1 at
t = 1 and is decreasing on [1,∞). Now substitute t with λ(1− s), which can range
the interval from 0 to λ. If λ < 1, this expression cannot reach 1. In this case,
the maximumal winning probability is attained at s = 0 and equals λ e−λ. For
λ ≥ 1, the expression λ(1−s) reaches 1 at s = (λ−1)/λ and the maximum winning
probability equals e−1.

4. Observing that:

P(X = k | Z = n) =
P(X = k, Z = n)

P(Z = n)
=

=
P(X = k, Y = n− k)

P(Z = n)
=

=
P(X = k)P(Y = n− k)

P(Z = n)
=

=
n!

k!(n− k)!
λkµn−k

(λ+ µ)n
=

=

(
n

k

)(
λ

λ+ µ

)k (
µ

λ+ µ

)n−k
,
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we find that the desired conditional distribution is binomial Bin

(
Z,

λ

λ+ µ

)
.

5. a) Conditionally given N , we have S ∼ Bin(N, p), i. e.:

P(S = k | N = n) =

(
n

k

)
pk(1− p)n−k ; k = 0, 1, . . . , n .

By the total probability theorem, we compute:

P(S = k) =
∞∑
n=k

P(N = n)P(S = k | N = n) =

=
∞∑
n=k

λn e−λ

n!

(
n

k

)
pk(1− p)n−k =

=
λnpke−λ

k!

∞∑
n=k

(1− p)n−k

(n− k)!
=

=
(pλ)k e−pλ

k!
.

Thus, S ∼ Pois(pλ). Similarly, T ∼ Pois((1− p)λ).
b) Observing that:

P(S = k, T = l) = P(S = k,N = k + l) = P(N = k + l)P(S = k | N = k + l) =

=
λk+l e−λ

(k + l)!

(
k + l

k

)
pk(1− p)l = λk+l pk(1− p)l e−λ

k! l!
=

= P(S = k)P(T = l) ,

we find that S and T are indeed independent.

c) If N = n is a constant S are T dependent, provided that n ≥ 1 and 0 < p < 1:
in this case, S in T take at least two values (with positive probability), but S = k
implies T = n− k.

6. As the survival function seems to be the simplest way of describing the exponential
distribution:

P(T > t) = e−λt ; t ≥ 0 ,

the memorylessness can be characterized with:

P(T > t+ s | T > t) = P(T > s)

This can be checked out in at least two ways.
First method. By direct calculation, we find that:

P(T > t+ s | T > t) =
P(T > t+ s)

P(T > t)
=
e−λ(t+s)

e−λt
= e−λs = P(T > s) .
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Second method. Consider a homogeneous Poisson process with intensity λ and
proceed as in Exercise 5 from Section 2.

Now let T be a memoryless random variable. Denoting by G(t) := P(T > t) its
survival function, we have:

G(t+ s) = G(t)G(s) .

for all t, s ≥ 0. Since the density is continuous on (0,∞), the survival function
is there continuously differentiable and has a right derivative at 0. Differentiation
with respect to s yields a differential equation:

G′(t) = G(t)G′(0) .

Moreover, the fact that the density vanishes outside (0,∞) leads to an initial con-
dition G(0) = 1. Thus the solution is unique and given by:

G(t) = eG
′(0) t ; t ≥ 0 ,

which means that the distribution of T is indeed exponential.

7. The easiest way to find the distribution of U is by means of the survival function:

P(U > u) = P(X > u, Y > u) = P(X > u)P(Y > u) = e−(λ+µ)u ,

which yields U ∼ Exp(λ+ µ).

To find the distribution of V , we refer to the cumulative distribution function:

P(V ≤ v) = P(X ≤ v, Y ≤ v) = P(X ≤ v)P(Y ≤ v) =
(
1− e−λv

)(
1− e−µv

)
.

Thus, the distribution of V is continuous with density:

fV (v) =

{
λ e−λv + µ e−µv − (λ+ µ) e−(λ+µ)v ; v > 0

0 ; sicer
.

8. We can add the interventions arising from the redirected calls, assuming that their
lengths are also distributed uniformly over the interval from half an hour to one
hour and independent of each other as well as of the interventions of the original
fire station and the emergency calls. As usual, denote by T1, T2, . . . the inter-arrival
times between the emergency calls (either processed by the original fire station or
redirected). Let Uk denote the length of the intervention following the k-th call.

Denoting the desired number of calls by K, this is the first natural number with
Uk > Tk+1. Since T1, T2, T3, . . . and U1, U2, U3, . . . are all independent, so are the
events {U1 > T2}, {U2 > T3}, . . .. In addition, they are equiprobable, forming a
Bernoulli sequence. Hence K follows the geometric distribution Geom

(
P(U1 > T2)

)
.

Finally, since U1 ∼ Unifc
(
(1

2
, 1)
)

and T2 ∼ Exp
(

1
2

)
are independent, we have

P(U1 > T2) =

∫ 1

1/2

∫ u

0

e−t/2 dt du = 1− 4 e−1/4 + 4 e−1/2 .
= 0

.
311 .
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9. a) For 0 ≤ s ≤ t, we have:

FS1|Nt=1(s) = P(S1 ≤ s | Nt = 1) =

= P(Ns ≥ 1 | Nt = 1) =

= P(Ns = 1 | Nt = 1) =

=
P(Ns = 1, Nt = 0)

P(Nt = 1)
=

=
P(Ns = 1, Nt −Ns = 0)

P(Nt = 1)
=

=
P(Ns = 1)P(Nt −Ns = 0)

P(Nt = 1)
=

=
λs e−λs e−λ(t−s)

λt e−λt
=

=
s

t
.

Thus, the desired conditional distribution is exactly the uniform distribution over
(0, t).

b) Similarly as before, for 0 ≤ s ≤ t, compute:

FS2|Nt=2(s) = P(Ns ≥ 2 | Nt = 2) =

=
P(Ns = 2, Nt −Ns = 0)

P(Nt = 2)
=

=
s2

t2
,

so that fS2|Nt=2(s) =
2s

t2
and E(S2 | Nt = 2) =

2t

3
.

Next,

FS1|Nt=2(s) = P(Ns ≥ 1 | Nt = 2) =

=
P(Ns = 1, Nt −Ns = 1) + P(Ns = 2, Nt −Ns = 0)

P(Nt = 2)
=

=
2st− s2

t2
,

so that fS1|Nt=2(s) =
2(t− s)
t2

and E(S1 | Nt = 2) =
t

3
.

10. First method. Observe that:

W = (t− S1) + (t− S2) + · · ·+ (t− SNt) = tNt − S1 − S2 − · · · − SNt .

Now recall that the conditional distribution of the sum S1 + · · ·+ Sn given Nt = n
matches the unconditional distribution of the sum U(1) + · · · + U(n) = U1 + · · · +
Un, where U1, . . . , Un are independent and distributed uniformly over (0, t), and
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where U(1), . . . , U(n) are the underlying order statistics. Therefore, the arrival times
S1, S2, . . . can be replaced with random variables U1, U2, . . ., which are distributed
uniformly over (0, t) and independent of each other as well as of Nt. As a result,

E(W ) = E
(
tNt − U1 − U2 − · · · − UNt

)
.

By Wald’s equation, we have:

E(W ) = tE(Nt)− E(U1)E(Nt) = t · λt− t

2
· λt = λt2

2
.

Second method. Observe that W =

∫ t

0

Ns ds. Taking the expectation, we find that:

E(W ) =

∫ t

0

E(Ns) ds =

∫ t

0

λs ds =
λt2

2
.

11. First method. Write:

X(t) =
Nt∑
i=1

e−θ(t−Si) ,

where, as usual, S1, S2, . . . denote the arrival times. Equivalently, describing our
counting process by a random set P , we may write:

X(t) =
∑
s∈P→ \t

e−θ(t−s) .

However, from part c) of Exercise 9, it follows that:

E
[
X(t) | Nt = n

]
= E

(
n∑
i=1

e−θ(t−Ui)

)
,

where U1, U2, . . . , Un are independent and distributed uniformly over [0, t]. There-
fore,

E
[
X(t) | Nt = n

]
= nE

(
e−θ(t−U1)

)
= n

1− e−θt

θt
,

or, alternatively,

E
[
X(t) | Nt

]
= Nt

1− e−θt

θt
,

leading to:

E
[
X(t)

]
=
λ(1− e−θt)

θ
.

Second method. Observe that the total effect of all shocks can be written as a
Riemann–Stieltjes integral:

X(t) =

∫ t

0

e−θ(t−s) dNs .
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Integrating by parts, we obtain:

X(t) = Nt − θ
∫ t

0

e−θ(t−s) Ns ds ,

which (noting that
∫
eθs ds =

(
s
θ
− 1

θ2

)
eθs + C) yields:

E
[
X(t)

]
= λt− λθ

∫ t

0

s e−θ(t−s) ds =
λ(1− e−θt)

θ
.

12. First method. Denote the desired time by T and, as usual, by T1 the first arrival time.
Clearly, if T1 ≥ c, then T = c. Otherwise, we aply the strong time-homogeneous
Markov property: loosely speaking, after the first arrival, everything starts at new.
Therefore,

E(T | T1) =

{
c ; T1 ≥ c

T1 + E(T ) ; T1 < c
=

= c 1(T1 ≥ c) +
(
T1 + E(T )

)
1(T1 < c) .

Taking the expectation, we obtain:

E(T ) = c P(T1 ≥ c) + E
[
T1 1(T1 < c)

]
+ E(T )P(T1 < c) =

= cλ

∫ ∞
c

e−λt dt+ λ

∫ c

0

t e−λt dt+ E(T )
∫ c

0

e−λt dt =

=
1− e−λc

λ
+ E(T )

(
1− e−λc

)
,

leading to:

E(T ) =
eλc − 1

λ
.

Second method. Number the arriving cars by 1, 2, 3, . . . and denote by N the number
of the (first) car which allows the hen to safely cross the road. Observe that:

{N = n} = {T1 < c, T2 < c, . . . , Tn−1 < c, Tn ≥ c} . (∗)

On the event {N = n}, we have T = T1+T2+ · · ·+Tn−1+c. Next, by independence,
we have:

E(Ti | N = n) = E(Ti | Ti < c) =
E
[
Ti 1(Ti < c)

]
P(Ti < c)

=
1

1− e−λc

∫ c

0

λt e−λt dt =

=
1

λ
− c e−λc

1− e−λc
.

for all i = 1, 2, . . . , n− 1. As a result,

E(T | N) = (N − 1)

(
1

λ
− c e−λc

1− e−λc

)
+ c .
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Since N follows the geometric distribution Geom
(
P(T1 ≥ c)

)
= Geom

(
e−λc

)
, its

expectation equals E(N) = eλc. Therefore,

E(T ) =
(
E(N)− 1

)(1

λ
− c e−λc

1− e−λc

)
+ c =

eλc − 1

λ
.

Third method. Keeping the notation from the second method and recalling (∗),
observe that N is a stopping time. Write:

T = T1 + T2 + · · ·+ TN + c− TN .

By Wald’s equation, we have:

E(T1 + T2 + · · ·+ TN) = E(T1)E(N) =
eλc

λ
.

Next, by (∗), independence and memorylessness of the exponential distribution, we
have:

E(TN | N = n) = E(Tn | Tn ≥ c) = c+
1

λ
,

leading to E(TN) = c + 1
λ
. Collecting all together, we obtain E(T ) = eλc−1

λ
, which

is, of course, the same as before.

13. First method. Denote by T1 the time of the first sharing after the initial one. If
T1 ≤ δ, Tony gets his prize in that moment, so that T = T1. Otherwise, everything
starts once again: from that moment on, Tony has to wait for time T ′ to get the prize;
the conditional distribution of T ′ given the whole history matches the unconditional
distribution of T . Therefore, we have:

T = T1 + T ′ 1(T1 > δ) ,

implying:
E(T ) = E(T1) + E(T )P(T1 > δ) .

Since T1 ∼ Exp(λ), we have E(T1) = 1/λ and P(T1 > δ) = e−λδ, leading to:

E(T ) =
1

λ
+ e−λδ E(T ) .

As a result, we have:

E(T ) =
1

λ
(
1− e−λδ

) .
Second method. Enumerate the sharings according to their times, assigning 0 to the
initial sharing. Denote by N the number of the sharing when Tony gets his prize.
Next, denoting by T1, T2, . . . the inter-arrival times in the sharing process, observe
that:

{N = n} = {T1 > δ, T2 > δ, . . . , Tn−1 > δ, Tn ≤ δ} .
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In the event {N = n}, we have T = T1 + T2 + · · ·+ Tn. Next, for i = 1, 2, . . . , n− 1,
we have:

E(Ti | N = n) = E(Ti | Ti > δ) =
E
[
Ti 1(Ti > δ)

]
P(Ti > δ)

=
1

e−λδ

∫ ∞
δ

λt e−λt dt =
1

λ
+ δ

(this follows from the memorylessness of the exponential distribution), while:

E(Tn | N = n) = E(Tn | Tn ≤ δ) =
E
[
Ti 1(Ti < δ)

]
P(Ti ≤ δ)

=
1

1− e−λδ

∫ δ

0

λt e−λt dt =

=
1

λ
− δ e−λδ

1− e−λδ
.

Therefore,

E(T | N) =
N

λ
+ (N − 1)δ − δ e−λδ

1− e−λδ
= N

(
1

λ
+ δ

)
− δ

1− e−λδ
.

Since N follows the geometric distrubution Geom
(
P(T1 < δ)

)
= Geom

(
1 − e−λδ

)
,

we have E(N) = 1
/ (

1− e−λδ
)
. As a result,

E(T ) =
1
λ
+ δ

1− e−λδ
− δ

1− e−λδ
=

1

λ
(
1− e−λδ

) .
Third method. With the notation from the second method, we have T = T1 + T2 +
· · ·+TN . Observe that N is a stopping time because the event {N = n} is uniquely
determined by T1, T2, . . . , Tn (see above). By Wald’s equation, we have:

E(T ) = E(N)E(T1) =
1

λ
(
1− e−λδ

) .
14. Describing the process by a random set P , observe that the age is uniquely de-

ternined by P→\t and the exceedance uniquely by P t→. Since these two random
sets are independent, so are the age and the exceedance. Moreover, Et matches
the first arrival time in the process P t→, which follows the same distribution as P .
Therefore, Et ∼ Exp(λ). Next, for 0 ≤ s ≤ t, we have:

P(At < s) = P(Nt −Nt−s ≥ 1) = 1− e−λs ,

and therefore, for 0 ≤ s < t,

FAt(s) = P(At ≤ s) = 1− e−λs .

Since At is bounded from above by t, we have FAt(s) = 1 for all s ≥ t. Thus, the
random variable At is neither discrete nor continuous. However, it follows the same
distribution as the random variable min{Ãt, t}, where Ãt ∼ Exp(λ) (imagine that
the given homogeneous Poisson process is extended to negative time).

There are at leat two methods to find the distribution of At + Et.
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First method. The distribution of the sum At + Et matches the distribution of
min{Ãt, t}+Et, where Ãt and Et are independent with the exponential distribution
Exp(λ). Therefore, for 0 ≤ s < t, we have:

P(At + Et ≤ s) = P(Ãt + Et ≤ s) =

=

∫ s

0

∫ s−x

0

fÃt(x) fEt(y) dy dx =

= λ2

∫ s

0

e−λx
∫ s−x

0

e−λy dy dx =

= λ

∫ s

0

(
e−λx − e−λs

)
dx =

= 1− e−λs − λs e−λs

and, for s ≥ t,

P(At + Et ≤ s) = P(At = t, Et ≤ s− t) + P(At < t,At + Et ≤ s) =

= P(Ãt ≥ t, Et ≤ s− t) + P(Ãt ≤ t, Ãt + Et ≤ s) =

= λ2

∫ ∞
t

e−λx dx

∫ s−t

0

e−λy dy + λ2

∫ t

0

e−λx
∫ s−x

0

e−λy dy =

= e−λt
(
1− e−λ(s−t))+ λ

∫ t

0

(
e−λx − e−λs

)
dx =

= e−λt
(
1− e−λ(s−t))+ 1− e−λt − λt e−λs =

= 1− e−λs − λt e−λs .

Summing up, we obtain:

FAt+Et(s) =


0 ; s ≤ 0

1− e−λs − λs e−λs ; 0 ≤ s < t
1− e−λs − λt e−λs ; s ≥ t

Second method. Consider the conditional cumulative ditribution function of At+Et
given Et:

FAt+Et|Et(s | y) = P(At + Et ≤ s | Et = y) = P(At ≤ s− y | Et = y) =

= P(At ≤ s− y) .

From FAt , we obtain:

FAt+Et|Et(s | y) =


0 ; s ≤ y

1− e−λ(s−y) ; y ≤ s ≤ y + t
1 ; s ≥ y + t

=

=


1 ; y ≤ s− t

1− e−λ(s−y) ; s− t ≤ y ≤ s
0 ; y ≥ s

.
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Now we apply FAt+Et(s) = λ

∫ ∞
0

FAt+Et|Et(s | y) e−λy dy. For 0 ≤ s ≤ t, we have:

FAt+Et(s) = λ

∫ s

0

(
1− e−λ(s−y)

)
e−λy dy = 1− e−λs − λs eλs

and for s ≥ t, we have:

FAt+Et(s) = λ

∫ s−t

0

e−λy dy + λ

∫ s

s−t

(
1− e−λ(s−y)

)
e−λy dy = 1− e−λs − λt eλs .

Combining both formulas, we obtain the same cumulative distribution function as
before.

Now observe that the desired cumulative distribution function is continuous, even
more, absolutely continuous. Hence the random variable At +Et is also continuous
in the sense that it has a density, which can be obtained by differentiation resulting
in:

fAt+Et(s) =


0 ; s < 0

λ2s e−λs ; 0 < s < t
(λ2t+ λ) e−λs ; s > t

.
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4 Marking, Thinning, Superposition

1. The described process is equivalent to the union of a homogeneous Poisson process
of the lorries with intensity 4 lorries per hour and a homogeneous Poisson process
of the cars with intensity 36 cars per hour.

a) 1− e−4 .
= 0

.
982.

b) Because of independence of the process of lorries and the process of cars, the
conditional expectation equals the unconditional, i. e., 36.

c) Using the original description of the process and independence, we find that the
desired probability equals

(
50
5

)
· 0.

15 · 0.
945 .

= 0
.
185.

d) Denoting by At the number of cars until time t and by T the arrival time of the
first lorry, the desired expectation is E(AT ). Conditioning on T , we have E(AT |
T ) = 36T and therefore E(AT ) = 36E(T ) = 36/4 = 9.

2. a) Consider the proces of all replacements and focus on the moment of the n-
th replacement or the beginning if n = 0. From the strong time-homogeneous
Markov property, it follows that the time until the next replacement along with the
maintainer who performs it has the same distribution as in the following situation:

� Take independent random variables U ∼ Exp(0
.
005) and V ∼ Exp(0

.
01).

� The time until the next replacement equals min{U, V }.
� The next replacement is performed by the first maintainer if U < V and by

the second one otherwise.

This is true regardless whether the current replacement is due to the first or to the
second maintainer, or whether we are at the beginning.

Now observe that the above description is also valid in the case where there are two
lamps, each of them with one bulb. Both bulbs are replaced as soon as they blow
out and the life time of the first follows the exponential distribution Exp(0

.
005),

while for the second bulb, we have Exp(0
.
01), assuming independence of all bulbs.

This case is not the same as in the original problem, but it follows exactly the same
distribution. Therefore, the actual changes form a homogeneous Poisson process
with intensity 0

.
015 replacement a day, so that each bulb is replaced in 1/0

.
015

.
= 67

days on average.

b)
0
.
005

0
.
015

=
1

3
.

3. First method. Denote by M the time needed to get the man, by Z the time needed
to get the two women, and by T the time needed to get all desired actors. Clearly,
T = max{M,Z}. We have M ∼ Exp(2) and Z ∼ Gama(2, 1), so that for t > 0,

fM(t) = 2 e−2t , FM(t) = 1− e−2t ,

fZ(t) = t e−t , FZ(t) = 1− (1 + t)e−t .

Thanks to the independence, we have:

FT (t) = FM(t)FZ(t) = 1− (1 + t)e−t − e−2t + (1 + t)e−3t .
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The expectation can be computed either by means of the desity:

fT (t) = t e−t + 2 e−2t − (2 + 3t) e−3t ,

E(T ) =
∫ ∞

0

(
t2 e−t + 2t e−2t − (2t+ 3t2) e−3t

)
dt =

37

18

or by means of the survival function:

E(T ) =
∫ ∞

0

(
1− FT (t)

)
dt =

∫ ∞
0

(
(1 + t)e−t + 2 e−2t − 3(1 + t) e−3t

)
dt =

37

18
.

Second method. Consider the united process of the arrivals of men and women. This
is a homogeneous Poisson process with intensity 3, where each arrival represents a
woman with probability 1/3 and a man with probability 2/3. Denote by N the
first arrival after which it is true that at least two women and at least one man
has arrived. Denoting by T1, T2, . . . the inter-arrival times in the united process, we
have T = T1 + T2 + · · ·+ Tn. By Wald’s equation, we than have:

E(T ) = E(N)E(T1) =
1

3
E(N) .

Thus, the problem has been reduced to the computation of the expectation:

E(N) =
∞∑
n=0

P(N > n) .

Clearly, P(N > 0) = P(N > 1) = P(N > 2) = 1. For n ≥ 2, {N > n} matches the
event that among the people that arrived up to the n-th arrival, there are either
only women or only men or exactly one woman and n− 1 men. Consequently,

P(N > n) =

(
1

3

)n
+

(
2

3

)n
+ n

(
2

3

)n−1

(for n = 0 and n = 1, this calculation is invalid because the underlying subevents
are not paiwise disjoint). Therefore,

E(N) = 2 +
∞∑
n=2

[(
1

3

)n
+

(
2

3

)n
+ n

(
2

3

)n−1
]
.

Making use of the formulas:

∞∑
n=0

qn =
1

1− q
,

∞∑
n=0

nqn−1 =
1

(1− q)2
; −1 < q < 1

we finally obtain E(N) = 37/6 and consequently E(T ) = 37/18, which is the same
as beofore.
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4. First method. Denote by Z3 the time when the wife is ready to buy a car and by M2

the time when the husband is ready. These two random variables are independent
with Z3 ∼ Gama(3, λ) and M2 ∼ Gama(2, µ).

a) The desired probability equals:

P(Z3 < M2) =

∫ ∞
0

∫ ∞
x

fZ3(x)fM2(y) dy dx =

=
λ3µ2

2

∫ ∞
0

x2 e−λx
∫ ∞
x

y e−µy dy dx =

=
λ3

2

∫ ∞
0

x2(µx+ 1) e−(λ+µ)x dx =

=
λ3(λ+ 4µ)

(λ+ µ)4
.

b) The time needed to buy a car is the minimum of the random variables Z3 and
M2. We make use of the survival function:

P(M2 > t) = (µt+ 1)e−µt , P(Z3 > t) =
1

2
(λ2t2 + 2λt+ 2)e−λt .

As a result, we have:

P(T > t) = P(Z3 > t,M2 > t) = P(Z3 > t)P(M2 > t) =

=
1

2

(
λ2µt3 + λ(λ+ 2µ)t2 + 2(λ+ µ)t+ 2

)
e−(λ+µ)t .

which (see Problem 2) yields:

E(T ) =
∫ ∞

0

P(T > t) dt =
3λ2µ

(λ+ µ)4
+
λ(λ+ 2µ)

(λ+ µ)3
+

1

λ+ µ
+

1

λ+ µ
=

=
3λ3 + 12λ2µ+ 8λµ2 + 2µ3

(λ+ µ)4
.

Second method. We apply the fact that the marks (i. e., brands) corresponding to
particular arrivals (i. e., offers) are independent and identically distributed: each
offer corresponds to wife’s brand with probability λ/(λ+µ) and to husband’s brand
with probability µ/(λ+ µ).

a) The event that they buy a car according to wife’s choice corresponds to the
following beginnings of the mark sequence:

WWW , HWWW , WHWW , WWHW .

Therefore, the desired probability equals:(
λ

λ+ µ

)3

+ 3

(
λ

λ+ µ

)3
µ

λ+ µ
=
λ3(λ+ 4µ)

(λ+ µ)4
.
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b) We make use of Wald’s equation. Consider the times between particular offers
of either brand, i. e., the inter-arrival times of the united process. As usual, denote
them by T1, T2, T3, . . .. Then we may write T = T1 +T2 + · · ·+TN , where N denotes
the number of the offer where a car is eventually bought. For each time interval, we
know its length (Tn) and the brand of the offer appearing at the end of the interval.
With respect to this information, N is a stoping time. As the united offers form a
homogeneous Poisson process with intensity λ+ µ, we have E(Tn) = 1/(λ+ µ). By
Wald’s equation, it suffices to compute E(N).

The possible sequences of the brands of the offers along with their probabilities and
lengths (N) are given in the table below:

Sequence WWW HWWW WHWW WWHW
Length 3 4 4 4
Probability λ3

(λ+µ)3
λ3µ

(λ+µ)4
λ3µ

(λ+µ)4
λ3µ

(λ+µ)4

Sequence HH WHH HWH WWHH WHWH HWWH
Length 2 3 3 4 4 4
Probability µ2

(λ+µ)2
λµ2

(λ+µ)3
λµ2

(λ+µ)3
λ2µ2

(λ+µ)4
λ2µ2

(λ+µ)4
λ2µ2

(λ+µ)4

This, N ∼

(
2 3 4
µ2

(λ+µ)2
λ3+2λµ2

(λ+µ)3
3λ2µ

(λ+µ)3

)
, which gives:

E(N) =
3λ3 + 12λ2µ+ 8λµ2 + 2µ3

(λ+ µ)3

and, finally, by Wald’s equation,

E(T ) =
3λ3 + 12λ2µ+ 8λµ2 + 2µ3

(λ+ µ)4
,

which is the same as before.

5. First method. The event that exactly exactly one arrival in the second process oc-
curs before the first arrival in the first process matches the event that among all
arrivals, the first one is due to the second process and the second one to the first

process. The probability of this event equals
λµ

(λ+ µ)2
.

More generally, all arrivals form a Bernoulli sequence of trials, where successes are
identified with the arrivals due to the first process. Denoting by X the number
of arrivals in the second process before the first arrival in the first process, X + 1
then denotes the number of all trials up to and including the first successful one.

Therefore, X + 1 ∼ Geom

(
λ

λ+ µ

)
, which yields E(X) =

µ

λ
.

Second method. Denoting by T the first arrival time in the first process, the condi-
tional distribution of X given T is Poisson Pois(µT ), so that:

P(X = 1 | T ) = µT e−µT and E(X | T ) = µT .
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Combining this with the fact that T ∼ Exp(µ), we obtain:

P(X = 1) = E
[
µT e−µT

]
= µ

∫ ∞
0

t e−µt λe−λt dt =
λµ

(λ+ µ)2
,

E(X) = µE(T ) =
µ

λ
.

6. Denote by H the event that exactly one student has arrived during the first half
an hour. This event is a disjoint union of two events: the event HF that this only
student arises from financial mathematics and the event HS that he/she arises from
general mathematics. From the theory of marking, it follows that:

P(HF | H) =
4

6
=

2

3
and P(HS | H) =

2

6
=

1

3
.

Denote by TF the arrival time of the first student of financial mathematics. Given
HF , this random variable is uniformly distributed over the interval from 0 to 1/2
(measured in hours), while given HS, the random variable TF − 1/2 follows the
exponential distribution Exp(4). Therefore:

E(TF | HF ) =
1

4
in E(TF | HS) =

1

2
+

1

4
=

3

4
.

Finally, the desired conditional expectation equals:

E(TF | H) =
E
(
TF 1(H)

)
P(H)

=

=
E
(
TF 1(HF )

)
+ E

(
TF 1(HS)

)
P(H)

=

=
P(HF )E(TF | HF ) + P(HS)E(TF | HS)

P(H)
=

= P(HF | H)E(TF | HF ) + P(HS | H)E(TF | HS) =

=
2

3
· 1
4
+

1

3
· 3
4
=

=
5

12
,

or, equivalently, 25 minutes.

7. In the union of the two processes, each arrival arises from the first process with
probability λ/(λ + µ) and from the second process with probability µ/(λ + µ).
Saying that there were exactly k arrivals in the first process before the n-th arrival
in the second process is equivalent to saying that among the first n+ k− 1 arrivals
in the united process, there were k arrivals in the first process and n − 1 arrivals
in the second process and that the (n + k)-th process in the united process arises
from the second process. Denoting by X the number of arrivals in the first process
before the n-th arrival in the second process, we have:

P(X = k) =
(n+ k − 1)!

k! (n− 1)!

(
λ

λ+ µ

)k (
µ

λ+ µ

)n−1

; k = 0, 1, 2, . . .
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In other words, the random variable X follows the negative binomial distribution
NegBin

(
n, λ

λ+µ

)
, shifted n to the left.

8. The given walk reaches the point (i, j) if and only if among the first i + j total
arrivals, there are exactly i due to the the first and exactly j due to the second
process. The probability of this event equals:

(i+ j)!

i! j!

λiµj

(λ+ µ)i+j
.

9. The event that the bank passes all the tests matches the event that the number of
the tests the bank fails equals zero. The tests the bank fails correspond to the pairs
(t, s), where s > at. Thus, the desired probability equals e−θ, where:

θ =
4λ

π

∫∫
0<at<s

1

(1 + s2)2
dt ds =

4λ

πa

∫ ∞
0

s

(1 + s2)2
ds =

2λ

πa
.
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5 General Poisson Process

1. a) Pois(24)

b) e−4 .
= 0

.
0183.

c) For 10 ≤ s ≤ 12, observe that:

FS2|N12=2(s) = P(Ns ≥ 2 | N12 = 2) =

=
P(Ns = 2, N12 −Ns = 0)

P(N12 = 2)
=

=
(s− 10)4

16
.

In further computation, it is easier to work with S2 − 10. For 0 ≤ t ≤ 2, we have:

FS2−10|N12=2(t) =
t2

16
, fS2−10|N2=2(t) =

t3

4
,

leading to E(S2 − 10 | N2 = 2) = 8
5
= 13

5
and therefore E(S2 | N2 = 2) = 11:36.

Next,

FS1|N12=2(s) = P(Ns ≥ 1 | N12 = 2) =

=
P(Ns = 1, N12 −Ns = 1) + P(Ns = 2, N12 −Ns = 0)

P(N12 = 2)
=

=
(s− 10)2

2
− (s− 10)4

16
,

which gives:

FS1−10|N12=2(t) =
t2

2
− t4

16
, fS1−10|N12=2(t) = t− t3

4

and E(S1 − 10 | N2 = 2) = 16
15

= 1 1
15

, so that E(S1 | N2 = 2) = 11:04.

2. Noting that Nt ∼ Pois

(∫ t

0

a

1 + s
ds

)
= Pois

(
a ln(1 + t)

)
, we obtain:

FT1(t) = 1− P(Nt = 0) = 1− e−a ln(1+t) = 1− 1

(1 + t)a
.

The expectation can be computed either by means of the density:

fT1(t) =
a

(1 + t)a+1
, E(T1) = a

∫ ∞
0

t dt

(1 + t)a+1
=

1

a− 1
; a > 1

or by means of the survival function:

E(T ) =
∫ ∞

0

(
1− FT (t)

)
dt = a

∫ ∞
0

dt

(1 + t)a+1
=

1

a− 1
; a > 1 .
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3. a) Denoting by Nt the number of latecomers appearing up to time t, Ns −Nt then
represents the number of latecomers arriving with delay from t to s, provided that
t ≤ s. Observe that:

Nt ∼ Pois

(∫ t

0

e−u du

)
= Pois

(
1− e−t

)
,

Ns −Nt ∼ Pois

(∫ s

t

e−u du

)
= Pois

(
e−t − e−s

)
.

In addition, Nt and Ns − Nt are independent. Extending the definition of Ns to
s =∞ (the total number of latecomers), N∞−Nt denotes the number of latecomers
which arrive with delay more than t; note that N∞ −Nt ∼ Exp(e−t).

The event that exactly one latecomer appears, arriving with delay more than two
months, can be expressed as:

A := {N2 = 0, N∞ −N2 = 1} .

Thanks to the independence, its probability equals:

P(A) = P(N2 = 0)P(N∞ −N2 = 1) = ee
−2−1 e−2 e−e

−2

= e−3 .
= 0

.
0498 .

b) What we have to compute is E(S1 | A).
First method. Consider the conditional cumulative distribution function:

FS1|A(t) = P(S1 ≤ t | A) =
= P(Nt ≥ 1 | A) =

=
P(Nt ≥ 1, N2 = 0, N∞ −N2 = 1)

P(N2 = 0, N∞ −N2 = 1)
.

Clearly, FS1|A(t) = 0 for t ≤ 2; for t ≥ 2, we have:

FS1|A(t) =
P(N2 = 0, Nt −N2 = 1, N∞ −Nt = 0)

P(N2 = 0, N∞ −N2 = 1)
=

=
P(N2 = 0)P(Nt −N2 = 1)P(N∞ −Nt = 0)

P(N2 = 0)P(N∞ −N2 = 1)
=

= 1− e2−t .

The desired conditional expecation can be derived directly from the survival func-
tion:

E(S1 | A) =
∫ ∞

0

(
1− FS1|A(t)

)
dt = 2 +

∫ ∞
2

e2−t dt = 3 .

Second method. Thanks to the independence of the restrictions of the process to
time intervals up to two months and more than two months of delay, the conditional
distribution of the arrival time of the only latecomer given A matches the conditional
distribution of the arrival time of the only latecomer with a delay of more than two



M. RAIČ: SOLVED PROBLEMS IN COUNTING PROCESSES 33

months, given that there was exactly one latecomer with more than two months of
delay (regardless what happened less than two months from the deadline). More
precisely, denoting by S1;(2,∞) the arrival time of the first latecomer with delay of
more than two months, observe that

P(T1 > t | A) = P(Nt = 0 | N2 = 0, N∞ −N2 = 1) =

=
P(Nt = 0, N2 = 0, N∞ −N2 = 1)

P(N2 = 0, N∞ −N2 = 1)
=

=
P(N2 = 0, Nt −N2 = 0, N∞ −N2 = 1)

P(N2 = 0, N∞ −N2 = 1)
=

=
P(N2 = 0)P(Nt −N2 = 0, N∞ −N2 = 1)

P(N2 = 0)P(N∞ −N2 = 1)
=

=
P(Nt −N2 = 0, N∞ −N2 = 1)

P(N∞ −N2 = 1)
=

= P(Nt −N2 = 0 | N∞ −N2 = 1) =

= P(S1;(2,∞) > t | N∞ −N2 = 1) .

for all t > 2. As a result, the corresponding conditional density equals:

fS1|A(t) = fS1;(2,∞)|N∞−N2=1(t) =
e−t∫∞

2
e−s ds

= e2−t .

Integration yields:

E(S1 | A) =
∫ ∞

2

t e2−t dt = 3 .

Alternatively, one can observe that the conditional distribution matches the expo-
nential distribution Exp(1) shifted by 2 to the right, which has expectation 3, as
before.

4. Denote by X the number of arrivals with the specified property and by N the total
number of arrivals. Recall that given {N = n}, the set of arrivals follows the same
distribution as the set U1, U2, . . . , Un, where U1, . . . , Un are independent with the
exponential distribution Exp(λ). Therefore, the conditional distribution of X given
{N = n} matches the (unconditional) distribution of the sum:

n∑
i=1

1
(
{U1, . . . , Ui−1, Ui+1, . . . , Un} ∩ (Ui, Ui + δ] = ∅

)
so that:

E(X | N = n) =
n∑
i=1

P
(
{U1, . . . , Ui−1, Ui+1, . . . , Un} ∩ (Ui, Ui + δ] = ∅

)
=

= nP
(
{U1, U2, . . . , Un−1} ∩ (Un, Un + δ] = ∅

)
.
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The latter probabilities can be computed by conditioning on Ui. First, using the
independence of the random variables U1, U2, . . . , Un−1, observe that

P
(
{U1, U2, . . . , Un−1} ∩ (u, u+ δ] = ∅

)
=

= P
(
U1 /∈ (u, u+ δ], U2 /∈ (u, u+ δ], . . . , Un−1 /∈ (u, u+ δ]

)
=

= P
(
U1 /∈ (u, u+ δ]

)
P
(
U2 /∈ (u, u+ δ]

)
· · ·P

(
Un−1 /∈ (u, u+ δ]

)
=

=
(
P
(
U1 /∈ (u, u+ δ]

)n
.

for all u ≥ 0. Next, compute

P
(
Uj /∈ (u, u+ δ]

)
= 1− λ

∫ u+δ

u

e−λu du = 1− e−λu
(
1− e−λδ

)
,

so that

P
(
{U1, U2, . . . , Un−1} ∩ (u, u+ δ] = ∅

)
=
(
1− e−λu

(
1− e−λδ

))n−1

.

However, since Un is independent of the vector (U1, . . . , Un−1), we also have:

P
(
{U1, U2, . . . , Un−1} ∩ (Un, Un + δ] = ∅

∣∣ Un) = (1− e−λUn(1− e−λδ))n−1

,

leading to

P
(
{U1, U2, . . . , Un−1} ∩ (Un, Un + δ] = ∅

∣∣ Un) =
= E

[(
1− e−λUn

(
1− e−λδ

))n−1
]
=

= λ

∫ ∞
0

(
1− e−λu

(
1− e−λδ

))n−1

e−λu du =

=
1− e−nλδ

n
(
1− e−λδ

) .
Therefore,

E(X | N = n) =
1− e−nλδ

1− e−λδ
.

Since N ∼ Pois
(
a
λ

)
, we finally find that:

E(X) =
e−a/λ

1− e−λδ
∞∑
n=0

1

n!

(a
λ

)n (
1− e−nλδ

)
=

1− e−a(1−e−λδ)/λ

1− e−λδ
.

5. Denoting by Nt the number of arrivals up to time t, observe that:

P(T1 > t) = P(Nt = 0) = exp

(
−
∫ t

0

du

1 + u

)
=

1

1 + t
.
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Differentiating, we obtain the probability density function:

fT1(t) =
1

(1 + t)2
.

Now we turn to the distribution of T2, which will again initially be represented by
the probabilities P(T2 > s). First, we shall compute the conditional probabilities

P(T2 > s | T1) ,

where we shall take advantage of the above-mentioned characterization of the con-
ditional distribution given T1 (and P→\T1). Like in T1, we could use the basic equi-
valence

{T2 > s} = {S2 > T1 + s} = {NT1+s > 2} .

However, it is more beneficial to express this event just in terms of PT→ or P ∩
(T1,∞). Such an expression is

{T2 > s} = {NT1+s −NT1 = 0} .

Given T1, the process P ∩ (T1,∞) is a Poisson process with intensity function t 7→
1

1+t
1(t > T1). Therefore, given T1, the random variable NT1+s − NT1 follows the

Poisson distribution with parameter:∫ T1+s

T1

1

1 + t
dt = ln

1 + T1 + s

1 + T1

.

As a result, we have:

P(T2 > s | T1) = P(NT1+s −NT1 = 0 | T1) = exp

(
− ln

1 + T1 + s

1 + T1

)
=

1 + T1

1 + T1 + s
.

Integrating, we obtain the unconditional survival function:

P(T2 > s) =

∫ ∞
0

1 + t

1 + t+ s
fT1(t) dt =

∫ ∞
0

dt

(1 + t)(1 + t+ s)
=

ln(1 + s)

s

and differentiation again yields the probability density function:

fT2(s) =
(1 + s) ln(1 + s)− s

s2(1 + s)
.
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6 Renewal Processes

1. a) The arrivals of the bus form a renewal process. Denoting the inter-arrival times
by T1, T2, . . ., the long-term number of arrivals per hour equals:

1

E(T1)
=

3

2
.

b) The event that the Simpsons will wait for less than 20 minutes can be expressed
as {T1 ≥ 40 min} ∪ {T1 + T2 < 1 h}. This can be represented by the following
diagram:

T1

T2

20

20

40

40

60

60

The ratio of the areas yields the desired probability 5/8.

2. Denote by Nt the number of all calls received up to time t and by Ñt the number of
the calls it can respond. Since all calls form a homogeneous Poisson process, they
satisfy the strong law of large numbers:

Nt

t

a.s.−−−→
t→∞

1

2
.

Now we turn to the calls to which the station can respond. We may assume that
the whole process starts with such a call. In this case, these calls form a renewal

process with expected inter-arrival time
3

4
+

1

1/2
=

11

4
. By the strong law of large

numbers for renewal processes, we have:

Ñt

t

a.s.−−−→
t→∞

4

11
.

This allows us to derive the long-term proportion of redirected calls:

1− Ñt

Nt

a.s.−−−→
t→∞

1− 8

11
=

3

11
.
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3. Taking fines for rewards, we get a renewal–reward process. Since Ben has to pay
a fine with probability 1/3 each time, the expected amount of fine per inspection
cycle is 35 euros. As the expected length of the inspection cycle is 7/4 years, the
long-term amount of fine per year equals:

35

7/4
= 20 euros.

4. This can be regarded as a renewal–reward process: suppose that the process starts
in State 1. For the arrivals, consider the jumps from State 2 to State 1; the reward
attached to the i-th arrival (jump) is the length of the stay in State 1 in the inter-
arrival interval finishing with that arrival/jump; the reward is being received evenly
during the time spent in State 1. Then Wt is equal to the total time spent in State 1,
while Wt/t is equal to the proportion of the time spent in this state.

Noting that E(T1) = µ1 + µ2 and E(R1) = µ1 and applying the strong law of large

numbers, the long-term proportion of those stays equals
µ1

µ1 + µ2

.

A similar reasoning leads to the same result in the case when the process starts in
State 2: then define the arrivals to be the jumps from State 1 to State 2.

5. This is a renewal–reward process, where the inter-arrival times are the durations
of the calls, while the reward Ri equals one if Monica manages to persuade the
customer in her i-th call and zero otherwise. Clearly, τ ≤ 1/2. Therefore,

FTi(t) =


0 ; t ≤ 0

3(t− t2) ; 0 ≤ t < τ
1 ; t ≥ τ

.

Observe that the random variable Ti is neither discrete nor continuous. However,
there are several ways to compute the expectation.

First method : by means of the Riemann–Stieltjes integral, splitting into continuous
and discrete part:

E(Ti) =
∫ ∞

0

t dFTi(t) =

∫ τ

0

t F ′Ti(t) dt+ τ
(
FTi(τ)− FTi(τ−)

)
=

=

∫ τ

0

(3t− 6t2) dt+ τ(1− 3τ + 3τ 2) =

= τ − 3τ 3

2
+ τ 3 .

Second method : choose a random variable T̃ with cumulative distribution function
which is absolute continuous and matches the cumulative distribution function of Ti
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on the interval [0, τ). Then Ti follows the same distribution as min{T̃ , τ}. Therefore,

E(Ti) = E
[
min{T̃ , τ}

]
=

=

∫ ∞
−∞

min{t, τ} fT̃ (t) dt =

=

∫ τ

−∞
t fT̃ (t) dt+ τ

∫ ∞
τ

fT̃ (t) dt =

=

∫ τ

0

t F ′
T̃
(t) dt+ τ

(
1− FT̃ (τ)

)
=

=

∫ τ

0

t F ′Ti(t) dt+ τ
(
FTi(τ)− FTi(τ−)

)
,

which is the same as before.

Third method : use the fact that, since Ti ≥ 0,

E(Ti) =
∫ ∞

0

P(Ti > t) dt =

∫ τ

0

(1− 3t+ 3t2) dt = τ − 3τ 3

2
+ τ 3 ,

which is again the same as before.

The event {Ri = 1} matches the event that Monica succeeds to persuade the cus-
tomer up to time τ . Hence,

E(Ri) = P(Ri = 1) = 3(τ − τ 2) .

Denoting by Wt the number of sold articles up to time t, we almost surely have:

lim
t→∞

Wt

t
=

E(R1)

E(T1)
=

6(1− τ)
2− 3τ + 2τ 2

=: h(τ) .

From:

h′(τ) =
6(2τ 2 − 4τ + 1)

(τ 2 − 3τ + 2)2

we find that on the interval [0, 1/2], the function h attains its maximum at τ =

1 −
√

2
2

.
= 0

.
293. If the time is measured in hours, this means that it pays to hang

up after 17 minutes and 34 seconds.

6. First method. Consider the moment of the first sharing after the one we know Tony
has missed. Denote this moment by T1. If T1 ≤ 30, Tony obtains this prize, so that
T = T1. Otherwise, everything starts at new: Tony has to wait for a time T ′, which,
given the history, follows exactly the same distribution as T . Therefore,

T = T1 + T ′ 1(T1 > 30) ,

implying:

E(T ) = E(T1) + E(T )P(T1 > 30) = 30 +
1

2
E(T ) ,
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which yields E(T ) = 60. In other words, Tony should expect to wait for an hour to
obtain a prize.

Second method. Denote by N the number of the sharing at which Tony obtains his
prize (the sharing we know Tony has missed is excluded). Denoting by T1, T2, . . .
the times between the sharings, observe that:

{N = n} = {T1 > 30, T2 > 30, . . . , Tn−1 > 30, Tn ≤ 30} .

In the event {N = n}, we have T = T1 + T2 + · · · + Tn. Next, given {N = n} the
conditional distribution of the times T1, . . . , Tn−1 is uniform over the interval from 30
to 40 minutes (so that E(Tk | N = n) = 35 for k = 1, . . . , n−1), while Tn is uniformly
distributed over the interval from 20 to 30 minutes (so that E(Tn | N = n) = 25).
Therefore,

E(T | N) = 35(N − 1) + 25 .

Since N follows the geometric distribution Geom(1/2), we have E(N) = 2 and
consequently,

E(T ) = E
[
35(N − 1) + 25

]
= 60 .

Third method. Keeping the notation used in the second method, observe that T =
T1 + T2 + · · · + TN . Moreover, N is a stopping time, for the event {N = n} is
uniquely determined by T1, T2, . . . , Tn (see above). Applying Wald’s equation, we
find that E(T ) = E(N)E(T1) = 2 · 30 = 60.

Fourth method. As before, denote by T1, T2, . . . the times between the prize sharings.
Imagine that Tony waits for the prizes infinitely long (staying on the spot each time
after receiving a prize). Then the moments when Tony gets a prize can be considered
as arrivals in another renewal process. Denote its inter-arrival times by T̃1, T̃2, . . .
(so that T = T̃1).

Denote by Wt the number of prizes Tony that obtains until time t. This can be
expressed in two ways. First, in terms of the renewal process of the moments when
Tony obtains a prize, and second, in terms of the renewal–reward process of all
sharings combined with rewards R1, R2, . . ., where Rn = 1 if Tony obtains a prize
at the n-th sharing and Rn = 0 otherwise. Observe that P(Rn = 0) = P(Rn = 1) =
1/2. Applying the strong law of large numbers for both characterizations, we find
that:

lim
t→∞

Wt

t
=

1

E(T̃1)
=

1

E(T )
=

E(R1)

E(T1)

almost surely,. As a result,

E(T ) =
E(T1)

E(R1)
= 60 .

7. The inter-arrival distribution of such a process is Gama(2, λ), with cumulative dis-
tribution function:

F (t) = λ2

∫ t

0

s e−λs ds ,
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and Laplace–Stieltjes transform:

F̂ (z) =
λ2

(z + λ)2

(which can be, by a convolution argument, also derived from the Laplace trans-
form of the exponential distribution). Thus, the Laplace–Stieltjes transform of the
renewal function is:

M̂(z) =
λ2

z(z + 2λ)
=
λ

2

[
1

z
− 1

z + 2λ

]
resulting in the renewal function:

M(t) =
λ

2

∫ t

0

(
1− e−2λs

)
ds =

λt

2
− 1− e−2λt

4
.

8. From the Laplace transform of the inter-arrival distribution:

F̂ (z) = p+
(1− p)λ
λ+ z

we obtain the Laplace–Stieltjes transform of the renewal function:

M̂(z) =
p

1− p
+

λ

(1− p)z
.

Therefore, the renewal function equals:

M(t) =
p

1− p
+

λ

1− p
t .

9. Let M(t) := E(Nt). This is a delayed renewal process with the first (inter-)arrival
time following the gamma Gama(2, λ) distribution with Laplace transform:

Ĝ(z) =
λ2

(z + λ)2

and with subsequent inter-arrival times following the exponential Exp(λ) distribu-
tion with Laplace transform:

F̂ (z) =
λ

z + λ
.

Thus, the Laplace–Stieltjes transform of the renewal measure equals:

M̂(z) =
Ĝ(z)

1− F̂ (z)
=

λ2

z(z + λ)
=
λ

z
− λ

z + λ
,

while the renewal measure itself equals:

M(t) = λ

∫ t

0

ds− λ
∫ s

0

e−λs ds = λt− 1 + e−λt .
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10. a) The first arrival time follows the exponentional distribution Exp(µ), so that its
Laplace transform equals:

G(z) =
µ

z + µ
.

By the strong time-homogeneous Markov property, all further arrivals can be ex-
pressed as sums of two independent random variables, one of them following the
exponential distribution Exp(λ) (service time), while the other following Exp(µ)
(idle time). Thus, the Laplace transform of the further inter-arrival times equals:

F̂ (z) =
λµ

(z + λ)(z + µ)
.

Thus, the Laplace–Stieltjes transform od the renewal function equals:

M̂(z) =
µ(z + λ)

z(z + λ+ µ)
=

λµ

λ+ µ

1

z
+

µ2

λ+ µ

1

z + λ+ µ
.

and finally, the renewal function is:

M(t) =
λµ

λ+ µ

∫ t

0

ds+
µ2

λ+ µ

∫ t

0

e−(λ+µ)s ds =
λµ

λ+ µ
t+

µ2

(λ+ µ)2

(
1− e−(λ+µ)t

)
.

b) First method. By linearity of the expectation,

E(T2) =
1

λ
+

1

µ
=
λ+ µ

λµ
,

Plugging this into the strong law of large numbers, we obtain the limiting intensity
1

E(T2)
=

λµ

λ+ µ
.

Second method. By convergence of the renewal measure, we have:

lim
t→∞

M(t)

t
=

λµ

λ+ µ
.

c)
λµ

λ+ µ

/
µ =

λ

λ+ µ
.

11. Observe that each time Roy meets a supervisor, he continues in place A with proba-
bility 1/2 and in place B with probability 1/2, regardless of the history. In addition,
from the strong time-homogeneous Markov property, it follows that the inter-arrival
times are independent. The distribution of the first arrival time is exponential
Exp(1), while the distributions of the subsequent inter-arrival times are mixtures
of half Exp(1) and half Exp(1/2). Therefore, the arrivals of the supervisors indeed
form a delayed renewal process.

Denoting by G the cumulative distribution function of the first arrival time and by
F the cumulative distribution function of the subsequent inter-arrival times, that
is:

G(t) = 1− e−t , F (t) = 1
2

(
1− e−t

)
+ 1

2

(
1− e−t/2

)
.
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The Laplace transforms are:

Ĝ(z) =
1

z + 1
, F̂ (z) =

1

2

[
1

2z + 1
+

1

z + 1

]
=

3z + 2

2(2z + 1)(z + 1)

and the Laplace–Stieltjes transform of the renewal measure is:

M̂(z) =
2(2z + 1)

z(4z + 3)
=

2

3z
+

4

3(4z + 3)
,

resulting in the renewal measure:

M(t) =
2t

3
+

4
(
1− e−3t/4

)
9

.

12. First method : by renewal equation. From the Laplace transforms of both distribu-
tions:

Ĝ(z) =
1− e−az

az
, F̂ (z) =

λ

z + λ
we obtain the Laplace–Stieltjes transform of the renewal measure:

M̂(z) =

(
1− e−az

)
(z + λ)

az2
.

Now write:

M̂1(z) :=
z + λ

az2
, M̂2(z) := e−azM̂1(z) , M̂(z) = M̂1(z)− M̂2(z) .

The functions M̂1 in M̂2 are the Laplace–Stieltjes transforms of the functions:

M1(t) =
t

a
+
λt2

2a
, M2(t) =

{
0 ; t < a

M1(t− a) ; t ≥ a
,

so that the renewal measure equals:

M(t) =M1(t)−M2(t) =


t

a
+
λt2

2a
; t ≤ a

1 + λt− λa

2
; t ≥ a

.

Second method : directly from the homogeneous Poisson process: conditioning on
the first arrival time, we obtain:

E(Nt | T1) =
(
1 + λ(t− T1)

)
1(t ≥ T1) .

Integrating, we find that:

E(Nt) =
1

a

∫ a

0

(
1 + λ(t− s)

)
ds = 1 + λt− λa

2

for t ≥ a, while:

E(Nt) =
1

a

∫ t

0

(
1 + λ(t− s)

)
ds =

t

a
+
λt2

2a

for t ≤ a. This is the same as before.
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13. Consider the number of arrivals between times t and t + s. Clearly, its expected
value equals M(t + s) −M(t). However, this is also the number of arrivals up to
time s in the process P . Thanks to stationarity, this follows the same distribution
as the number of arrivals up to time s in the original process, which has expectation
M(s). As a result, the renewal function is additive:

M(t+ s) =M(t) +M(s) .

Since it is increasing, there is no other way but M(t) = ct for some constant c ≥ 0
(details are omitted). Plugging this into the renewal equation, we obtain:

G(t) = c

[
t−
∫

[0,t]

(t− s) dF (s)
]
=

= c
(
t− E

[
(t− T2)1(T2 ≤ t)

])
=

= cE
[
t1(T2 > t) + T2 1(T2 ≤ t)

]
=

= cE
[
min{T2, t}

]
,

provided that t ≥ 0; clearly, G(t) = 0 for t < 0. Taking the limit as t tends to
infinity, we find that c = 1/E(T2). Hence, finally,

G(t) =
E
[
max{T2, t}

]
E(T2)

.

Alternatively, the expression arising from the renewal equation can be integrated by
parts. Strictly speaking, we make use of the Fubini theorem. More precisely, from:

min{s, t} =
∫
u≥0
u<s
u≤t

du

we derive the following alternative form:

G(t) =
1

E(T2)

∫∫
u≥0
u<s
u≤t

dF (s) du =

=
1

E(T2)

∫
[0,t]

∫
(u,∞]

dF (s) du =

=
1

E(T2)

∫ t

0

(
1− F (u)

)
du =

=

∫ t

0

(
1− F (u)

)
du∫ ∞

0

(
1− F (u)

)
du

.
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