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Chapter 1

Introduction

1.1 Motivation and outline

Stein’s method serves as a powerful tool for estimating the error in approximating com-
plicated probability distributions by more tractable ones. It was introduced in 1970 by
Charles Stein (1920–2016) [31], first for assessing the error in the central limit theo-
rem. Recall that, roughly speaking, if X1, X2, . . . , Xn are independent and identically
distributed random variables with mean µ1 and variance σ2

1, then:

X1 +X2 + · · ·+Xn ≈ N (nµ1, nσ
2
1)

or equivalently,
X1 +X2 + · · ·+Xn − nµ1

σ1

√
n

≈ N (0, 1) .

Keeping µ1 and σ2
1 fixed, it is known that the larger n, the smaller is the error in the preced-

ing approximation. Although the error was estimated well before Stein, most prominently
by Berry [7] and Esseen [16], Stein’s method allows for numerous generalizations where
classical approaches, such as characteristic functions, seem not to work. In particular,
Stein’s method succeeds to cope successfully with many sorts of dependence.

Stein’s method has been adapted to numerous other approximations. The first such mod-
ification seems to be due to Louis H Y Chen [9], who adapted it to Poisson approximation.
Recall that if λ > 0 and X1, X2, . . . are independent and identically distributed random

variables following the Bernoulli distribution Be(λ/n) =

(
0 1

1− λ/n λ/n

)
, then:

X1 +X2 + · · ·+Xn ≈ Po(λ) .

There are several surveys of Stein’s method. Stein summarizes his work in his book [32].
For more modern surveys, see Barbour [2], and Barbour and Chen [3, 4].

The idea behind Stein’s method could be viewed as follows: let M be a vector space of
certain signed measures containing a tractable probability measure ν. To approximate
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other (presumably complicated) measures µ ∈ M by ν, we first find a linear operator
B : M → Y which annihilates ν, i. e.,

Bν = 0 ;

here, Y is another vector space. We strive to measure the size of the error µ− ν in terms
of the size of Bµ.

The equality Bν = 0 can be rewritten as ν ∈ kerB. If µ− ν can be estimated in terms of
Bµ, then B should separate probability measures sufficiently well, so that it is reasonable
to assume that kerB = span({ν}). Denoting

〈h , ρ〉 :=

∫
h dρ (1.1.1)

(provided that h ∈ L1(|ρ|)), observe that the operator

Qρ := ρ− 〈1 , ρ〉 ν

has the very same kernel. Therefore, looking algebraically, there exists a linear operator
T : Y →M , such that T B = Q:

M M

Y

Q

B
T

Remark 1.1.1. The operator Qρ := ρ−〈1 , ρ〉 ν is not the only option, but in the present
notes, we shall not consider other possibilities.

If µ is a probability measure, then Qµ = T Bµ = µ− ν. Therefore, in order to bound the
size of µ− ν, we can first bound the size of Bµ and then the size of T Bµ.

By size, we here mean a suitable seminorm. Seminorms are often based on a certain class
of test functions H1:

‖ρ‖ = sup
h∈H1

∣∣〈h , ρ〉∣∣
(provided that h ∈ L1(|ρ|) for all h ∈H1): see Appendix A.

Suppose that B is dual to some operator A. That is, suppose that:

• H1 ⊆H , where H is another vector space, such that h ∈ L1(|ρ|) for all h ∈H ;

• there is another vector space F and a bilinear function from F × Y to R again
denoted by 〈· , ·〉;
• A : F →H is such that 〈f , Bρ〉 = 〈Af , ρ〉 for all f ∈ F and ρ ∈M .

Remark 1.1.2. In practice, F is a space of functions, though it could in general be any
vector space.
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Then, of course,
〈Af , ν〉 = 〈f , Bν〉 = 0 .

Seeking T as being dual to some operator S : H → F , observe that

〈h , µ− ν〉 = 〈h , T Bµ〉 = 〈ASh , µ〉

and, on the other hand,
〈h , µ− ν〉 =

〈
h− 〈h , ν〉1 , µ

〉
.

Putting all together, we obtain

Outline of Stein’s method. To estimate 〈h , µ− ν〉 for all h ∈H :

1. Find a vector space F and a linear operator A : F → H , such that 〈Af , ν〉 = 0
for all f ∈ F . The operator A is called Stein operator.

2. For each h ∈H , find f ∈ F solving the Stein equation

Af = h− 〈h , ν〉1 .

Then we have
〈h , µ− ν〉 = 〈Af , µ〉 .

3. Efficiently bound the right hand side of the preceding equation, which is called Stein
expectation.

Remark 1.1.3. One we have found A, we can drop the assumption that it is dual to
some operator B. This allows us to extend the space M , i. e., the family of measures
which can be approximated.

1.2 Basic examples of Stein operators

There is no unique way of finding a Stein operator. Indeed, there might be different Stein
operator for the same approximating distribution ν. Below, we give two basic methods:

1. We derive the operator from the approximating distribution ν (provided that we
already have one in mind). Typically we first derive the operator B by comparing
consequent point probabilities (for discrete distributions) or by differentiating the
density (for continuous distributions). Then observe that B is dual to some A.

2. We derive the operator from the probability distribution µ, which is to be approxi-
mated. Let W be a random variable with distribution µ. Typically, we perturb W
to W ′, which is defined on the same probability space and follows the same distri-
bution µ. Often, W and W ′ are exchangeable, but in general, this is not necessary.
Next, if G is a linear operator, such that

E
[
f(W ′)− f(W )

∣∣ W ] = Gf(W ) ,
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then E
[
Gf(W )

]
= 0. If G is tractable, we can seek A ≈ G. We often rescale and

seek A ≈ κG, where κ is a constant factor (if we consider a sequence of random
variables Wn, the order of the underlying operators Gn often depends on n, whereas
we wish the operators An to converge to a certain operator). If G is not tractable,
we can try

E
[
κ
(
f(W ′)− f(W )

)
−Rf

∣∣ W ] = Af(W ) ,

where Rf is intended to be of smaller order than κ
(
f(W ′) − f(W )

)
, as we seek A

close to κG.

It is also possible to consider several perturbations W ′
α. If they are indexed over a

countable set, consider factors κα and let

E
[∑

α

κα
(
f(W ′)− f(W )

)
−Rf

∣∣ W] = Af(W ) . (1.2.1)

The perturbations can even be indexed over a measurable space. In this case, take
κ to be a measure on this space and let

E
[∫ (

f(W ′
α)− f(W )

)
κ(dα)−Rf

∣∣∣∣ W] = Af(W ) . (1.2.2)

The approximating distribution ν should be an annihilator of the image of A, i. e.,
〈Af , ν〉 = 0 for all f ∈ F (by this method, F must be a space of functions). This
method can also help solve the Stein equation. Details will be given later: see the
beginning of Chapter 2.

Below we give three examples of Stein operators obtained by the first method. Applica-
tions of the second method will be given later.

1. Poisson approximation. Let λ > 0 and let ν = Po(λ) be the Poisson distribution.
This is a probability measure on N0 := {0, 1, 2, . . .}. Signed measures on N0 can be
identified with their mass functions, so that we simply write

ν(k) =
λke−λ

k!
.

Accordingly, for each signed measure ρ on N0 and each function h ∈ L1(|ρ|), we
have

〈h , ρ〉 =
∞∑
k=0

h(k) ρ(k) .

Now observe that
ν(k − 1)

ν(k)
=
k

λ

for all k ∈ N := {1, 2, 3, . . .}. This can be formulated in terms of linear operators:
let B be the operator mapping from the space M of signed measures ρ on N0 with∑∞

k=0 k |ρ(k)| <∞ to the space Y of all signed measures on N defined by

Bρ(k) := λ ρ(k − 1)− k ρ(k) .
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Then Bν = 0.

Now let F be the space of all bounded functions on N. Observe that for each
f ∈ F ,

〈f , Bρ〉 =
∞∑
k=1

λ f(k) ρ(k − 1)−
∞∑
k=1

k f(k) ρ(k)

=
∞∑
w=0

λ f(w + 1) ρ(w)−
∞∑
w=1

w f(w) ρ(w)

(notice that all sums converge due to the definitions of F and Y ). Let H be the
space of all functions on N0, such that there exists M , such that |h(w)| ≤ M w for
all w ∈ N0. Then B is dual to the operator A : F →H defined by

Af(w) :=

{
λ f(w + 1)− w f(w) ; w = 1, 2, 3, . . .

λ f(1) ; w = 0 .
(1.2.3)

This is the usual Stein operator for the Poisson distribution. To simplify computa-
tions, we shall usually assume that f is also defined at 0 in an arbitrary way.

2. Binomial approximation. Let n ∈ N, let 0 < θ < 1 and let ν = Bin(n, θ) be the
binomial distribution. This is a probability measure on {0, 1, 2, . . . , n} given by

ν(k) =

(
n

k

)
θk(1− θ)n−k .

Similarly as for the Poisson distribution, observe that

ν(k − 1)

ν(k)
=

k

n− k + 1

1− θ
θ

for all k ∈ {1, 2, . . . , n}. Thus, if B be the operator mapping from the space M of
signed measures (or, equivalently, functions) on {0, 1, . . . , n} to the space Y of all
signed measures on {1, 2, . . . , n} defined by

Bρ(k) := (n− k + 1)θ ρ(k − 1)− k(1− θ) ρ(k) ,

we have Bν = 0.

Leting F be the space of all functions on {1, 2, . . . , n}, observe that for each f ∈ F ,

〈f , Bρ〉 =
n∑
k=1

(n− k + 1)θ f(k) ρ(k − 1)−
n∑
k=1

k(1− θ) f(k) ρ(k)

=
n−1∑
w=0

(n− w)θ f(w + 1) ρ(w)−
n∑

w=1

w(1− θ) f(w) ρ(w) .
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Letting H be the space of all functions on {0, 1, 2, . . . , n}, B is dual to the operator
A : F →H defined by

Af(w) :=


(n− w)θ f(w + 1)− w(1− θ) f(w) ; w = 1, 2, 3, . . . , n− 1

(n− w)θ f(1) ; w = 0
−n(1− θ) f(w) ; w = n .

This is one of possible choices for the Stein operator for the binomial distribution.
Again, to simplify computations, we can assume that f is also defined at 0 and n+1
in an arbitrary way.

3. Normal and other continuous approximations. Let ν = N (0, 1) be the standard
normal distribution (the generalization to arbitrary mean and variance is straight-
forward). This is a continuous distribution, and we shall identify continuous distri-
butions with their densities (more precisely, with equivalence classes of functions,
where two functions are equivalent if they differ on a set with measure zero). Thus,
we have

ν(x) = e−x
2/2 ,

which is differentiable with
ν ′(x) = −x e−x2/2 .

Thus, if, let’s say, M is the space of all continuously differentiable functions on the
real line with exponentially decaying derivative, Y is the space of all continuous
exponentially decaying functions, and B : M → Y is defined by

Bρ(x) := ρ′(x) + x ρ(x) ,

then Bν = 0. Let F be the space of all continuously differentiable functions on the
real line of polynomial growth. For each f ∈ F and ρ ∈ M , integration by parts
gives

〈f , Bρ〉 =

∫ ∞
−∞

f(x) ρ′(x) dx+

∫ ∞
−∞

x f(x) ρ(x) dx

= −
∫ ∞
−∞

f ′(x) ρ(x) dx+

∫ ∞
−∞

x f(x) ρ(x) dx

(polynomial growth of f and exponential decay of ρ ensure that limx→±∞ f(x) ρ(x) =
0). Letting H be the space of all functions on the real line of polynomial growth,
we find that B is dual to the operator A : F →H defined by

Af(w) := −f ′(x) + x f(x) .

However, usually, we take A with the opposite sign, i. e., Af(w) = f ′(x)− x f(x).

Remark 1.2.1. In view of Remark 1.1.3, the preceding derivation of the Stein operator
for the normal distribution does not imply that normal approximation is restricted to
measures with continuously differentiable densities. Indeed, the space M can be extended
to quite a general class of measures, but the extension can depend on the class H of test
functions.
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Remark 1.2.2. Under suitable conditions, for a probability density ν with continuously
differentiable derivative and with ν ′(x) = ψ(x) ν(x), we obtain a Stein operator Af(x) =
f ′(x)− ψ(x) f(x). We omit the details.



Chapter 2

Poisson approximation

2.1 Independent trials

Let Xi ∼ Be(pi), i ∈ I , be independent Bernoulli random variables, i. e., P(Xi = 1) = pi
and P(Xi = 0) = 1− pi for all i ∈ I . Assume that

∑
i∈I pi = λ <∞. Notice that due to

the latter condition, we can assume without loss of generality that I is countable (but
may be infinite). By a well known result, the sum W =

∑
i∈I Xi converges almost surely.

It is known that if, roughly speaking, the pi’s are small, then W approximately follows
the Poisson distribution. However, we shall here pretend that we do not know this fact
and try to find a Stein operator by the second method mentioned at the beginning of
Section 1.2. Actually, at some point, we use the fact that if I = {1, 2, . . . , n}, pi = λ/n
for all i and n tends to the infinity, then W weakly converges to some distribution, but
we will not need to know to which one.

Let the collection (X ′i)i∈I be an independent copy of the collection (Xi)i∈I . Denote
Wi := W −Xi =

∑
j∈I \{i}Xj. Then W ′

i := Wi +X ′i follows the same distribution as W .
In fact, W and W ′ even form an exchangeable pair, but we shall not need this fact.

Define a relation U ∼ V iff E(U | W ) = E(V | W ). In addition, let ∆f(w) := f(w + 1)−
f(w) be the forward difference. Now take a function g : N0 → R and observe that

g(W ′
i )− g(W ) =

(
g(W ′

i )− g(Wi)
)
−
(
g(W )− g(Wi)

)
= ∆g(Wi)X

′
i −∆g(W − 1)Xi

∼ pi ∆g(Wi)−∆g(W − 1)Xi

= pi ∆g(W )− pi ∆2g(W − 1)Xi −∆g(W − 1)Xi

with the following two supplements:

• The calculation is valid provided that ∆2g is bounded: if |∆2g(w)| ≤ M for all
w ∈ N0, then |∆g(Wi) − ∆g(W )| ≤ |∆2g(W )| ≤ M . Thus, E

(
|∆g(Wi)|

∣∣ W) ≤
|∆g(W )|+M and E

(
|∆g(Wi)|Xi

∣∣ W) ≤ pi
(
|∆g(W )|+M

)
.

• For the sake of simplicity, we here assume that g is also defined at −1; the values
of the expressions are independent of the choice of g(−1).

11
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Now, in view of (1.2.1), sum over i:∑
i∈I

(
g(W ′

i )− g(W )
)
∼ λ∆g(W )−

∑
i∈I

pi ∆
2g(W − 1)Xi −∆g(W − 1)W

= Ãg(W )−
∑
i∈I

pi ∆
2g(W − 1)Xi ,

where Ãg(w) := λ∆g(w)−∆g(w − 1)w, noting that if ∆2g is bounded, the summation
is valid as well (in particular, all expressions almost surely exist). As a result, we have

E
[
Ãg(W )

]
=
∑
i∈I

pi E
[
∆2g(W − 1)Xi

]
,

From Section 1.2, recall that it makes sense to choose Ã so that
∑

i∈I pi ∆
2g(W − 1)Xi

is of smaller order than Ãg(W ). In our case, if |∆2g(w)| ≤ M for all w ∈ N0 (but not
necessarily w = −1), we can estimate:∑

i∈I

pi E
∣∣∆2g(W − 1)Xi

∣∣ ≤M
∑
i∈I

p2
i .

Now if I = {1, 2, . . . , n}, pi = λ/n for all i and n tends to the infinity, then recall that W
weakly converges to some distribution, or, say, random variable. Then it is plausible that
Ãg(W ) also converges in distribution to some random variable, while

∑
i∈I p2

i = λ2/n

tends to zero. Thus, correct terms have been stored into Ãg(W ).

We should now seek a probability measure ν which annihilates the image of Ã . However,
we can just observe that Ãg = Af , where f(w) = ∆g(w − 1) and where A is defined as
in (1.2.3), that is

Af(w) = λ f(w + 1)− w f(w)

(again, we assume that f(0) is defined, but for w ∈ N0, the value of Af(w) is independent
of f(0)). In Section 1.2, we have shown that the Poisson distribution Po(λ), that is,

Po(λ)(k) =
λke−λ

k!

annihilates Af (that is,
〈
Af , Po(λ)

〉
= 0), provided that f is bounded. However, it is

straightforward to check that this remains true if ∆f is bounded. Therefore,〈
Ãg , Po(λ)

〉
= 0 if ∆2g is bounded.

For each f : N0 → R, such that |∆f(w)| ≤ M for all w ∈ N (but not necessarily w = 0),
there exists g : {−1, 0, 1, . . .} → R, such that f(w) = ∆g(w−1) for all w ∈ N0. Therefore,
for each f satisfying the above-mentioned condition, we have

E
[
Af(W )

]
=
∑
i∈I

pi∆f(W )Xi

(and it is also straightforward to verify this identity directly). If f is a solution to the
Stein equation

Af(w) = h(w)−
〈
h , Po(λ)

〉
, (2.1.1)

this gives a bound on the error in the Poisson approximation, as summarized in the
assertion below.
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Proposition 2.1.1. If f is a solution to (2.1.1) with |∆f(w)| ≤ M for all w ∈ N (but
not necessarily w = 0), then we have∣∣E[h(W )

]
−
〈
h , Po(λ)

〉∣∣ ≤M
∑
i∈I

p2
i . (2.1.2)

2.2 Solution to the Stein equation

In the previous section, we have proved that we can efficiently estimate the error in the
Poisson approximation of the sum of independent Bernoulli indicators with small success
probabilities provided that we can bound ∆f for some solution f to the Stein equation
(2.1.1). This is what we shall do in this section. However, the bounds obtained here will
not only be useful for sums of independent indicators, but also for indicators with certain
dependence structure, which will be described in the sequel.

We shall here bound ∆f for the case where h is an indicator of a set A ⊆ N0. This will
allow us to bound the difference P(W ∈ A)− Po(λ)(A).

First, we shall find a solution fj for the indicator of the singleton {j}, i. e., the solution
to the equation

λ fj(w + 1)− w fj(w) = 1(w = j)− λj

j!
e−λ . (2.2.1)

Seeking fj to be in the form

fj(w) =
(w − 1)!

λw
ψj(w) for all w ∈ N,

equation (2.2.1) reduces to

ψj(w + 1)− ψj(w) =
λw

w!

(
1(w = j)− λj

j!
e−λ
)

for all w ∈ N0, (2.2.2)

setting ψj(0) := 0. For w = 1, 2, . . . , j, we obtain

ψj(w) =
w−1∑
k=0

(
ψj(k + 1)− ψj(k)

)
= −λ

j

j!
e−λ

w−1∑
k=0

λk

k!
. (2.2.3)

Next, if we wish ∆fj to be bounded, we must have limw→∞ ψj(w) = 0. But then we have

ψj(w) = −
∞∑
k=w

(
ψj(k + 1)− ψj(k)

)
=
λj

j!
e−λ

∞∑
k=w

λk

k!
(2.2.4)
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for all w = j + 1, j + 2, . . . The function ψj is now completely determined and satisfies
equation (2.2.2) for all w /∈ j. For w = j, we obtain

ψj(j + 1)− ψj(j) =
λj

j!
e−λ
( j−1∑
k=0

λk

k!
+

∞∑
k=j+1

λk

k!

)

=
λj

j!
e−λ
( ∞∑
k=0

λk

k!
− λj

j!

)
=
λj

j!
e−λ
(
eλ − λj

j!

)
=
λj

j!

(
1− λj

j!
e−λ
)

and (2.2.2) holds true in this case, too.

Now we examine ∆fj(w). We distinguish three cases.

Case 1: w = 1, 2, . . . , j − 1. Write

fj(w + 1) = −λ
j

j!
e−λ

w!

λw+1

w∑
l=0

λl

l!
,

fj(w) = −λ
j

j!
e−λ

(w − 1)!

λw

w−1∑
k=0

λk

k!

= −λ
j

j!
e−λ

(w − 1)!

λw

w∑
l=1

λl−1

(l − 1)!

= −λ
j

j!
e−λ

(w − 1)!

λw+1

w∑
l=0

l λl

l!
,

∆fj(w) = −λ
j

j!
e−λ

(w − 1)!

λw+1

w∑
l=0

(w − l)λl

l!

≤ 0 .
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Case 2: w = j + 1, j + 2, . . . Write

fj(w + 1) =
λj

j!
e−λ

w!

λw+1

∞∑
l=w+1

λl

l!
,

fj(w) =
λj

j!
e−λ

(w − 1)!

λw

∞∑
k=w

λk

k!

=
λj

j!
e−λ

(w − 1)!

λw

∞∑
l=w+1

λl−1

(l − 1)!

=
λj

j!
e−λ

(w − 1)!

λw+1

∞∑
l=w+1

l λl

l!
,

∆fj(w) =
λj

j!
e−λ

(w − 1)!

λw+1

∞∑
l=w+1

(w − l)λl

l!

≤ 0 .

Case 3: w = j. Write

fj(j) = −λ
j

j!
e−λ

(j − 1)!

λj

j−1∑
k=0

λk

k!
= −e

−λ

j

j∑
l=1

λl−1

(l − 1)!
,

fj(j + 1) =
λj

j!
e−λ

j!

λj+1

∞∑
k=j+1

λk

k!
=
e−λ

λ

∞∑
l=j+1

λl

l!
,

∆fj(j) =
e−λ

λ

(
1

j

j∑
l=1

λl

(l − 1)!
+

∞∑
l=j+1

λl

l!

)
≤ e−λ

λ

∞∑
l=1

λl

l!
=

1− e−λ

λ
.

Therefore, ∆fj(w) ≤ 1−e−λ
λ

for all w ∈ N.

For convenience, set fj(0) := 0 for all j ∈ N0. Now take A ⊆ N0 and define fA(w) :=∑
j∈A fj(w). We will show that the series converges pointwise and that fA solves the Stein

equation
λ fA(w + 1)− w fA(w) = 1(w ∈ A)− Po(λ)(A) . (2.2.5)

Clearly, 1(w ∈ A)−Po(λ)(A) =
∑

j∈A
(
1(w = j)−Po(λ)({j})

)
. As to the left hand side,

first deduce from (2.2.3) and (2.2.4) that |ψj(w)| ≤ λj

j!
e−λ

∑∞
k=0

λk

k!
= λj

j!
for all w ∈ N0.

Therefore,
∞∑
j=0

|fj(w)| ≤ (w − 1)!

λw

∞∑
j=0

λj

j!
=

(w − 1)!

λw
eλ <∞ .

As a result, the series
∑

j∈A fj(w) converges pointwise and, moreover, λfA(w + 1) −
w fA(w) =

∑
j∈A
(
λfj(w + 1) − w fj(w)

)
. Combining all together, the proof of (2.2.5) is

complete.

We have now shown that ∆fA(w) ≤ 1−e−λ
λ

for all w ∈ N. However, fN0(w) = fA + fAc

solves λfN0(w + 1) − w fN0(w) = 0, which implies fN0(w) = 0 for all w ∈ N. Therefore,

∆fA(w) = −∆fAc(w) ≥ 1−e−λ
λ

. We have now proved the following assertion:
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Proposition 2.2.1. For each A ⊆ N0, there exists a solution fA to the equation (2.2.5).
This solution is uniquely determined on N and can be arbitrary at 0. Finally, for all
w ∈ N, we have

|∆fA(w)| ≤ 1− e−λ

λ
.

Combining with Proposition 2.1.1, we obtain the following neat result:

Proposition 2.2.2. For independent random variables Xi ∼ Be(pi), i ∈ I , with λ =∑
i∈I <∞ and W =

∑
i∈I Xi, we have

∣∣P(W ∈ A)− Po(λ)(A)
∣∣ ≤ 1− e−λ

λ

∑
i∈I

p2
i (2.2.6)

for all A ⊆ N0.

Remark 2.2.3. We have 1−e−λ
λ

=
∫ 1

0
e−λt dt ≤ 1 and of course 1−e−λ

λ
≤ 1

λ
. Esti-

mate (2.2.6) is essentially due to Le Cam [23], who proved the estimates∣∣P(W ∈ A)− Po(λ)(A)
∣∣ ≤∑

i∈I

p2
i and

∣∣P(W ∈ A)− Po(λ)(A)
∣∣ ≤ 8

λ

∑
i∈I

p2
i

(the latter provided that maxi pi ≤ 1/4), using an entirely different argument. However,
as we shall see in the sequel, Stein’s method can go far beyond independence. This is in
contrast to the convolution argument used by Le Cam.

2.3 Abstract results

2.3.1 Coupling

Coupling of two probability distributions means constructing a joint probability distri-
bution with marginals being the two given distributions. In other words, suppose that
we have two random variables X and Y , which may be defined on different probability
spaces. Coupling means constructing random variables X ′ and Y ′ defined on the same
probability space, such that X ′ follows the same distribution as X and Y ′ follows the
same distribution as Y .

In applications of Stein’s method, coupling is extremely useful. In particular, if W is
the random variable whose distribution is to be approximated and X is another random
variable related to W , it is often useful to couple the (unconditional) distribution of W
with conditional distributions of W given X = x. Without loss of generality, one can
assume that there are random variables Wx defined on the same probability space as W ,
such that for each x, the distribution of Wx agrees with the conditional distribution of W
given X = x.

Example 2.3.1. In Section 1.2, we mentioned that a Stein operator can be constructed
by perturbing the original random variable W to a random variable W ′ with the same
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distribution. Now let W , X and Wx be as above and defined on the same probability space
(Ω,F ,P). Suppose that the map (ω, ω′) 7→ Wω(ω′) is measurable with respect to F ⊗F .
If there is another random variable X ′ which follows the same distribution of X and is
independent of all other random variables, then the random variable W ′(ω) := WX(ω)(ω)
follows the same distribution as W .

Now let Xi ∼ Be(pi), i ∈ I , be again a Bernoulli random variables with λ =
∑

i∈I Xi <
∞ and W =

∑
i∈I Xi, but now we drop the assumption that they are independent.

Instead, suppose that for each i ∈ I , there exists a random variable Wi, such that
the (unconditional) distribution of W̃i + 1 agrees with the conditional distribution of W
given Xi = 1, or, equivalently, the (unconditional) distribution of W̃i agrees with the
conditional distribution of

∑
j∈I \{i}Xj given Xi = 1. Notice that if the random variables

Xi are independent, we can simply take W̃i = Wi = W −Xi. Now observe that

E
[
λf(W + 1)− f(W )W

]
=
∑
i∈I

E
[
pif(W + 1)− f(W )Xi

]
=
∑
i∈I

pi E
[
f(W + 1)− f(W̃i + 1)

]
.

If |∆f(w)| ≤M for all w ∈ N, then∣∣E[λf(W + 1)− f(W )W
]∣∣ ≤M

∑
i∈I

pi E |W − W̃i| .

Combining with Proposition 2.2.1, we find that∣∣P(W ∈ A)− Po(λ)(A)
∣∣ ≤ 1− e−λ

λ

∑
i∈I

pi E |W − W̃i|

for all A ⊆ N0. This can be expressed in terms of the total variation distance between
two probability measures on N0 (see Example A.1.2):

dTV(µ, ν) := sup
A⊆N0

∣∣µ(A)− ν(A)
∣∣ .

Denoting by L (W ) the distribution of W , that is, L (W )(A) := P(W ∈ A), this leads to
the following result:

Theorem 2.3.2. For Xi, W and W̃i being as above, we have

dTV

(
L (W ), Po(λ)

)
≤ 1− e−λ

λ

∑
i∈I

pi E |W − W̃i| . (2.3.1)

Remark 2.3.3. We have only needed to consider conditional distributions of W given
Xi = 1, not given Xi = 0.

Remark 2.3.4. For independent indicators, the preceding theorem reduces to Proposi-
tion 2.2.2.
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2.3.2 Local dependence and decompositions

Coupling is not the only approach to dependence where Stein’s method can be applied.
An important alternative concept is local dependence. In the context of Stein’s method,
the latter was introduced by Chen [9] and refined by Arratia, Goldstein and Gordon [1].

Again, take a sum W =
∑

i∈I Xi of Bernoulli random variables Xi ∼ Be(pi) and assume
that for each i ∈ I , there exists a so called dependence neighbourhood Ni, such that Xi

is independent of the subfamily Xj, j ∈ I \
(
{i} ∪Ni

)
. Under this assumption, Ni can

actually be a punctured neighbourhood of i.

More generally, suppose that for each i, there is a decomposition

W = Xi + Yi + Zi , (2.3.2)

where Zi is independent of Xi. In this case, write

E
[
λf(W + 1)− f(W )W

]
=
∑
i∈I

E
[
pif(Xi + Yi + Zi + 1)− f(Yi + Zi + 1)Xi

]
.

Since Xi is independent of Zi, we have

E
[
pif(Zi + 1)− f(Zi + 1)Xi

]
= 0

and therefore

E
[
λf(W + 1)− f(W )W

]
=
∑
i∈I

pi E
[
f(Xi + Yi + Zi + 1)− f(Zi + 1)

]
−
∑
i∈I

E
[(
f(Yi + Zi + 1)− f(Zi + 1)

)
Xi

]
.

Now if |∆f(w)| ≤M for all w ∈ N, we can estimate∣∣∣E[λf(W + 1)− f(W )W
]∣∣∣ ≤M

∑
i∈I

(
pi E |Xi + Yi|+ E

[
Xi |Yi|

])
.

Combining with Proposition 2.2.2, we obtain the following result:

Theorem 2.3.5. For W decomposed as in (2.3.2) and W̃i being as above, we have

dTV

(
L (W ), Po(λ)

)
≤ 1− e−λ

λ

∑
i∈I

(
pi E |Xi + Yi|+ E

[
Xi |Yi|

])
. (2.3.3)

Remark 2.3.6. For independent indicators, the preceding theorem again reduces to
Proposition 2.2.2.
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2.4 Applications

2.4.1 Pattern matching

Let ξi, i ∈ N0, be a sequence of independent random variables taking values in a finite set
L. The elements of L will be called letters. Fix a pattern l0l1 · · · lr−1. We are interested
in the number of occurences of the given pattern in a certain subsequence of the random
variables ξi. More formally, for i ∈ I := {0, 1, . . . , n− 1}, let

Xi := 1(ξi = l0, ξi+1 = l1, . . . , ξl+r−1 = lr−1) .

Then W :=
∑n−1

i=0 Xi is the desired number of occurences.

This problem is an obvious case of local dependence, as we can take dependence neigh-
bourhoods

Ni := {i− r + 1, i− r + 2, . . . , i− 1, i+ 1, i+ 1, . . . , i+ r − 1} ∩I

or, equivalently, take Yi := Xi−r+1 + Xi−r+2 + · · · + Xi−1 + Xi+1 + Xi+2 + · · · + Xi+r−1,
letting Xj = 0 for j /∈ I .

In the sequel, we shall only consider the case where L = {0, 1} and patterns of type 11 · · · 1
(so called r-runs). In addition, we assume that P(ξi = 1) = p for all i. In this case, we
have EXi = pr for all i, so that λ = EW = npr. Clearly, we have E |Xi+Yi| ≤ (2r−1)pr.
Noting that

E
[
XiXi+k

]
=

{
pr+k ; i, i+ k ∈ I

0 ; otherwise

for k = 0, 1, . . . , r − 1, observe that E
[
Xi |Yi|

]
≤ 2

∑r−1
k=1 p

r+k = 2(pr+1−p2r)
1−p . Summing up,

we find that

pr E |Xi + Yi|+ E
[
Xi |Yi|

]
≤ (2r − 3)p2r +

2pr+1

1− p
and Theorem 2.3.5 yields

dTV

(
L (W ), Po(λ)

)
≤ 1− e−λ

λ
n

(
(2r − 3)p2r +

2pr+1

1− p

)
≤
(

(2r − 3)pr +
2p

1− p

)
min

{
1, npr

}
.

(2.4.1)

However, it is also easy to construct explicit couplings: observe that a sequence of random
letters following the conditional distribution given Xi = 1 can be obtained from a sequence
following the unconditional distribution simply by setting ξi, ξi+1, . . . , ξi+r−1 to 1. Denote
the new sequence by ξ̃i,0, ξ̃i,1, . . . We may write W̃i =

∑
j∈I \{i} X̃ij, where X̃ij = 1(ξ̃i,j =

ξ̃i,j+1 = · · · = ξ̃i,j+r−1 = 1) (and ξ̃ij = 0 for j /∈ {0, 1, . . . , n − 1}). Clearly, X̃ij = Xj

for |i − j| ≥ r. Otherwise, observe that X̃ij differs from Xj only if all appropriate i − j
original letters equal 1. Therefore, we have E |Xj − X̃ij| ≤ p|i−j| for all j 6= i, so that

E
∣∣W − W̃i

∣∣ ≤ ∑
j;1≤|i−j|≤r−1

p|i−j| + pr ≤ 2
∞∑
k=1

pk ≤ 2p

1− p
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and Theorem 2.3.2 yields

dTV

(
L (W ), Po(λ)

)
≤ 1− e−λ

λ

2npr+1

1− p
≤ 2p

1− p
min

{
1, npr

}
,

which is better than (2.4.1).

2.4.2 Birthday problems

Suppose that there are n people and d days in the year. Each person has his/her birthday
on a specific day with probability 1/d, independently of other persons. Let W be the
number of unordered pairs (i. e., sets with exactly two elements) {i, j}, such that the i-th
and the j-th person have the same birthday.

First, we apply the concept of local dependence. Denoting by I the set of all unordered
pairs on {1, 2, . . . , n}, we have W =

∑
{i,j}∈I X{i,j}, where X{i,j} is the indicator of the

event that the i-th and the j-th person have the same birthday. Letting

Y{i,j} :=
∑

1≤k≤n
k 6=i,j

(X{i,k} +X{k,j}) ,

observe that X{i,j} is independent of Z{i,j} := W −X{i,j} − Y{i,j}.

Remark 2.4.1. If i, j and k are distinct, then X{i,j} is independent of X{i,k} as well as
of X{k,j}. However, it is not jointly independent, i. e., it is not independent of the pair
(X{i,k}, X{k,j}).

Noting that EX{i,j} = 1/d and E
[
X{i,j}X{i,k}

]
= E

[
X{i,j}X{k,j}

]
= 1/d2 for all distinct

i, j, k, we have λ = EW = n(n−1)
2d

and Theorem 2.3.5 yields

dTV

(
L (W ), Po(λ)

)
≤ 1− e−λ

λ

n(n− 1)(4n− 7)

2d2

≤ min

{
4n− 7

d
,
n(n− 1)(4n− 7)

2d2

}
.

(2.4.2)

Alternatively, one can also construct explicit couplings. Fixing the i-th and the j-th
person, observe that a random pair of birthdays following the conditional distribution
given that they both have the same birthday can be obtained from a pair following
the unconditional distribution by picking one of them independently and uniformly at
random and assigning the other the birthday of the chosen one. Since the birthdays
are independent, we can leave the other persons unchanged. Accordingly, we construct
W̃{i,j}. We may write W̃{i,j} =

∑
{k,l}∈I \{{i,j}} X̃{i,j},{k,l}, where X̃{i,j},{k,l} is the indicator

of the event that k and l have the same birthday after the above-mentioned reassignment.
Clearly, X̃{i,j},{k,l} = X{k,l} if {i, j} ∩ {k, l} = ∅. Otherwise, we may assume without loss

of generality that k = i (and l 6= i, j). In this case, X̃{i,j},{i,l} differs from X{i,j} if, first, i
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is to be assigned the birthday of j, and second, if among the pairs {i, l} and {j, l}, there
is exactly one of them such that both persons have the same birthday. Therefore,

E
∣∣X{i,j} − X̃{i,j},{i,l}∣∣ =

d− 1

d2

and

E
∣∣W − W̃{i,j}∣∣ ≤ 2(n− 2)(d− 1)

d2
+

1

d
=

2nd− 3d− 2n+ 4

d2
.

COmpared to (2.4.2), Theorem 2.3.2 yields a better bound

dTV

(
L (W ), Po(λ)

)
≤ 1− e−λ

λ

n(n− 1)(2nd− 3d− 2n+ 4)

2d3
. (2.4.3)

The exact probability P(W = 0) is easy to compute – we have

P(W = 0) =
(d− 1)(d− 2) · · · (d− n+ 1)

dn−1

and for d = 365, n = 23, we have P(W = 0)
.
= 0.4927028 (closest to 1/2 for d = 365).

Poisson approximation yields P(W = 0) ≈ 0.4999982. From (2.4.3), we obtain an error
bound 0.0587, which is quite larger than the actual error.

Remark 2.4.2. This example has many possible extensions. Among others, the birthday
probabilities need not be equal and we may only consider pairs which form an edge in a
certain given graph (i. e., we consider coloured graphs). Both extensions can be handled
by Stein’s method, see Barbour, Holst and Janson [5].

2.4.3 Random permutations

Let Π be a uniformly distributed random permutation of {1, 2, . . . , n}. Take
C ⊆ {1, 2, . . . , n}2 and consider the statistic

W :=
n∑
i=1

1
(
(i,Π(i) ∈ C

)
.

The indicators 1
(
(i,Π(i)) ∈ C

)
do not exhibit any useful local dependence: any two of

them are dependent. However, it is easy to construct a proper coupling along with a
bound on the error in the Poisson approximation. One can rewrite W as

W =
∑

(i,j)∈C

Xij , (2.4.4)

where Xij := 1
(
Π(i) = j

)
. Given Π(i) = j, Π is uniformly distributed over all permuta-

tions π̃ with π̃(i) = j. Now define a new random permutation Π̃ij := τΠ(i),j ◦Π, where τr,s
is the transposition exchanging r and s (and identity if r = s):
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i Π−1(j)

j

Π(i)

Π

Π̃ij

We claim that Π̃ij is uniformly distributed over all permutations π̃ with π̃(i) = j. If π is
a fixed permutation and π̃ = τπ(i),j ◦ π, then, clearly, π̃(i) = j. Now fix a permutation π̃
with π̃(i) = j and examine all permutations π with π̃ = τπ(i),j ◦ π. As π = τj,π(i) ◦ π̃, π
must be of the form π = τj,l ◦ π̃ for some l ∈ {1, 2, . . . , n}. Conversely, if π = τj,l ◦ π̃, then
π(i) = l and τπ(i),j ◦ π = τl,j ◦ τj,l ◦ π̃ = π̃. Therefore, for each π̃ with π̃(i) = j, there are

exactly n permutations π, such that π̃ = τπ(i),j ◦ π. Therefore, Π̃ij is indeed uniformly

distributed over all permutations π̃ with π̃(i) = j. Letting X̃ijkl := 1
(
Π̃ij(k) = l

)
and

W̃ij =
∑

(k,l)∈C

X̃ijkl − 1 ,

the (unconditional) distribution W̃+1 agrees with the conditional distribution of W given
Xij = 1.

Now observe that Π̃ij agrees with Π except on i and Π−1(j). More precisely, if Π(i) = j,
then X̃ijkl = Xkl for all (k, l) ∈ C. If Π(i) 6= j, then X̃ijkl differs from Xkl in the following
four disjoint cases:

• If k = i and l = j, then Xkl = 0 and X̃ijkl = 1.

• If k = i and l = Π(i), then Xkl = 1 and X̃ijkl = 0.

• If Π(k) = j and l = j, then Xkl = 1 and X̃ijkl = 0.

• If Π(k) = j and l = Π(i), then Xkl = 0 and X̃ijkl = 1.

Therefore, if (i, j) ∈ C, then

W − W̃ij =
∑

(k,l)∈C

(
Xkl − X̃ijkl

)
+ 1

=
∑

l;(i,l)∈C

1
(
Π(i) = l

)
+

∑
k;(k,j)∈C

1
(
Π(k) = j

)
−
∑

(k,l)∈C

1
(
Π(i) = l, Π(k) = j

)
.

Next, observe that the preceding identity remains true if Π(i) = j. Noting that the event
{Π(i) = l, Π(k) = j} is only possible if either k = i and l = j or k 6= i and l 6= j, observe
that

W − W̃ij = 1
(
Π(i) = j

)
+

∑
l;(i,l)∈C
l 6=j

1
(
Π(i) = l

)
+

∑
k;(k,j)∈C

k 6=i

1
(
Π(k) = j

)
−
∑

(k,l)∈C
k 6=i,l 6=j

1
(
Π(i) = l, Π(k) = j

)
.
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Noting that P(Π(i) = j) = P(Π(k) = j) = 1
n

and P(Π(i) = l, Π(k) = j) = 1
n(n−1)

for
k 6= i, l 6= j, we estimate

E
∣∣W − W̃ij

∣∣ ≤ 1

n
+

1

n

∣∣{l ; (i, l) ∈ C, l 6= j
}∣∣+

1

n

∣∣{k ; (k, j) ∈ C, k 6= i
}∣∣

+
1

n(n− 1)

∣∣{(k, l) ∈ C ; k 6= i, l 6= j
}∣∣

=
n− 2

n(n− 1)
+

n− 2

n(n− 1)

∣∣{l ; (i, l) ∈ C, l 6= j
}∣∣

+
n− 2

n(n− 1)

∣∣{k ; (k, j) ∈ C, k 6= i
}∣∣+

1

n(n− 1)
|C|

= − n− 2

n(n− 1)
+

n− 2

n(n− 1)

∣∣{l ; (i, l) ∈ C
}∣∣

+
n− 2

n(n− 1)

∣∣{k ; (k, j) ∈ C
}∣∣+

1

n(n− 1)
|C|

For each (i, j) ∈ C, we have P(Xij = 1) = 1
n
. Summing up, we obtain∑

(i,j)∈C

P(Xij = 1)E
∣∣W − W̃ij

∣∣
≤ − n− 2

n2(n− 1)
|C|+ n− 2

n2(n− 1)

∣∣{(i, j, l) ; (i, j) ∈ C, (i, l) ∈ C
}∣∣

+
n− 2

n2(n− 1)

∣∣{(i, k, l) ∈ C ; (i, j) ∈ C, (k, j) ∈ C
}∣∣

+
1

n2(n− 1)
|C|2 .

Introducing

pi :=

∣∣{j ; (i, j) ∈ C
}∣∣

n
, qj :=

∣∣{j ; (i, j) ∈ C
}∣∣

n
, λ :=

|C|
n

= EW (2.4.5)

and applying Theorem 2.3.2, we obtain

dTV

(
L (W ),Po(λ)

)
≤ 1− e−λ

λ

(
n− 2

n− 1

n∑
i=1

p2
i+
n− 2

n− 1

n∑
j=1

q2
j+

λ2

n− 1
−(n− 2)λ

n(n− 1)

)
. (2.4.6)

Remark 2.4.3. If a constant factor in the error bound does not matter, the bound in
(2.4.6) can be simplified. First, by the inequality between the arithmetic and geometric
mean, we can estimate

λ2 =
n∑
i=1

pi

n∑
j=1

qj ≤
1

2

n∑
i=1

n∑
j=1

(p2
i + q2

j ) =
n

2

( n∑
i=1

p2
i +

n∑
j=1

q2
j

)
,

leading to

dTV

(
L (W ), Po(λ)

)
≤ 1− e−λ

λ

(
3n− 4

2(n− 1)

n∑
i=1

p2
i +

3n− 4

2(n− 1)

n∑
j=1

q2
j −

(n− 2)λ

n(n− 1)

)
.
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In addition, since pi ≤ np2
i , we can estimate

−(n− 2)λ

n(n− 1)
= −λ

n
+

1

n(n− 1)

n∑
i=1

pi ≤ −
λ

n
+

1

n− 1

n∑
i=1

p2
i

combining all together, we obtain a simplified bound

dTV

(
L (W ), Po(λ)

)
≤ 1− e−λ

λ

(
3

2

n∑
i=1

p2
i +

3

2

n∑
j=1

q2
j −

λ

n

)
.

Below we give two examples.

Example 2.4.4. The case of independent indicators can be regarded as a limiting case of
random permutations. For the sake of simplicity, we assume that we have finitely many
independent indicators X1, X2, . . . , Xr with success probabilities p1, p2, . . . , pr all divisible
by the same number s ∈ N. For each m ∈ N, define

C(m) :=
r⋃
i=1

{i} × {1, 2, . . . ,mpis} .

For n := ms ≥ r, let Π(m) be a uniformly distributed random permutation of {1, 2, . . . , n}.
Define

W (m) :=
n∑
i=1

X
(m)
i =

r∑
i=1

X
(m)
i ,

where X
(m)
i = 1

(
(i,Π(m)(i)) ∈ C

)
. Observe that X

(m)
i ∼ Be(pi). It is plausible that in

the limit as m tends to the infinity, the random variables X
(m)
1 , . . . , X

(m)
r are independent.

Next, observe that pi and λ match the underlying quantities defined in (2.4.5). Letting

q
(m)
j be the counterpart of qj in (2.4.5), observe that q

(m)
j ≤ r/n. Therefore, by (2.4.6),

we have

dTV

(
L
(
W (m)

)
, Po(λ)

)
≤ 1− e−λ

λ

(
n− 2

n− 1

n∑
i=1

p2
i +

n− 2

n− 1

r2

n
+

λ2

n− 1
− (n− 2)λ

n(n− 1)

)
and the right hand side tends to the bound in (2.2.6).

Example 2.4.5. Matching problem. Consider the setting of n = rd cards, d if which
have face value i, i = 1, 2, . . . , r, and draw r of them uniformly at random. A match
occurs if a card with face i appears in the i-th drawing. Denoting by W the number of
matchings, observe that this can be represented in form (2.4.4) if we take

C :=
r⋃
i=1

{i} × {d(i− 1) + 1, d(i− 1) + 2, . . . , d(i− 1) + d} .

Next, we have

pi =
1

r
1(i ≤ r) , qj =

1

n
, λ = 1
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and the bound (2.4.6) reduces after some calculation to

dTV

(
L (W ), Po(λ)

)
≤
(
1− e−1

)(n− 2

n− 1

1

r
+

1

n− 1

)
.

A matching problem was investigated in 1708 in de Montmort’s book [14] on games of
chance for the game ‘Treize’, where we have an ordinary deck of n = 52 cards taking
r = 13 possible face values. The original problem was to find the probability that there
was no match. The approximating probability equals Po(1)({0}) = 1/e

.
= 0.3679. The

exact probability can be computed by the inclusion–exclusion principle and equals 0.3569
(and was computed in 1711 by Nicolas Bernoulli, see page 324 of de Montmort [14]). The
difference equals 0.0109, while the error bound equals 0.06 (all up to rounding errors).

2.4.4 Occupancy problems

Let r balls be thrown independently into a family of bins indexed by I , with probability
qi of hitting the i-th bin. Suppose first that I is finite and define W to be the number
of empty bins. We can write W =

∑
i∈I Xi, where Xi is the indicator of the event that

the i-th bin is empty. Clearly, Xi ∼ Be(pi), where

pi = (1− qi)r .

The event {Xi = 1} is the same as the event that the balls have been only thrown into
bins in I \ {i}. Conditioning on this event is the same as modifying the probability
qj to qj/(1 − qi) for j 6= i and qi to 0. This is the same as first throwing the balls as
initially and then relocating each ball that has landed in the i-th bin into the j-th bin,
j 6= i, with probability qj/(1 − qi). Taking W to be the number of empty bins before
the rearrangement and W̃i the number of empty bins except for the i-th bin after the
rearrangement, we obtain the desired coupling.

We can write W̃i =
∑

j∈I \{i} X̃ij, where X̃ij is the indicator of the event that the j-th bin
is empty after the rearrangement. Write

W − W̃i = Xi +
∑

j∈I \{i}

(Xj − X̃ij) .

If the j-th bin is empty after the rearrangement, it must have been empty before the
rearrangement, too. Therefore, Xj ≥ X̃ij and

E |W − W̃i| = EXi +
∑

j∈I \{i}

(EXj − E X̃ij)

= (1− qi)r +
∑

j∈I \{i}

[
(1− qj)r −

(
1− qj

1− qi

)r ]
.
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We can further estimate this quantity by rewriting

(1− qj)r −
(

1− qj
1− qi

)r
= (1− qj)r −

(
1− qj −

qiqj
1− qi

)r
= (1− qj)r

[
1−

(
1− qiqj

(1− qi)(1− qj)

)r ]
.

Applying the inequality (1− x)r ≥ 1− rx, which holds true for all x ∈ [0, 1], estimate

(1− qj)r −
(

1− qj
1− qi

)r
≤ r(1− qj)r

qiqj
(1− qi)(1− qj)

=
rpjqiqj

(1− qi)(1− qj)
.

Letting λ =
∑

i∈I pi, combining all together and applying Theorem 2.3.2, we obtain the
following result:

Proposition 2.4.6. The distribution of the number W of empty bins defined as above
satisfies

dTV

(
L (W ), Po(λ)

)
≤ 1− e−λ

λ

∑
i∈I

(
p2
i + r

∑
j∈I \{i}

pipjqiqj
(1− qi)(1− qj)

)
. (2.4.7)

Now suppose that all bins are hit with equal probabilities, that is, qi = 1
n
, where n denotes

the number of bins. In this case, (2.4.7) reduces to

dTV

(
L (W ), Po(λ)

)
≤ n

1− e−λ

λ

(
1− 1

n

)2r (
1 +

r

n− 1

)
,

where λ = n
(
1− 1

n

)r
. Letting a := r/n, observe that pi ≤ e−a and consequently λ ≤ n e−a.

If a is not too large, the latter bound is of correct order. In this case, by Remark 2.2.3,
1−e−λ
λ

is of order min
{

1, 1
n
ea
}

. As it turns out, this case is an upper bound.

Lemma 2.4.7. There exists a constant B, such that, letting λ = n
(
1 − 1

n

)an
, we have

1−e−λ
λ
≤ min

{
1, B e

a

n

}
for all n ≥ 2 and a ≥ 0.

Corollary 2.4.8. Let W be as above. There exists a constant C, such that

dTV

(
L (W ), Po(λ)

)
≤ C

(
(1 + a) e−a min

{
1, n e−a

})
.

for all n ≥ 2 and r ≥ 0, where a = r/n. In particular, the total variation error in the
Poisson approximation tends to zero uniformly in n as a→∞.

Proof of Lemma 2.4.7. Applying Taylor expansion, we find that

an log

(
1− 1

n

)
= −a− a

2n
(
1− θ

n

)2 ≥ −a−
2a

n
(2.4.8)

for some θ ∈ [0, 1]. Therefore, for a ≤ n/2, we have λ ≥ n e−a−1. By Remark 2.2.3, it

follows that 1−e−λ
λ
≤ min

{
1, 1

λ

}
≤ min

{
1, e

a+1

n

}
. On the other hand, for a ≥ n/2, observe

that ea+1

n
≥ ea+1

2a
≥ e2

2
≥ 1, so that 1−e−λ

λ
≤ 1 = min

{
1, e

a+1

n

}
. This proves the result with

B = e.
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Now consider the more general case considering the number of bins containing exactly
m balls; denote this number by W (m). Again, W (m) =

∑
i∈I X

(m)
i , where X

(m)
i is the

indicator of the event that the i-th bin contains exactly m balls. Clearly, X
(m)
i ∼ Be

(
p

(m)
i

)
,

where

p
(m)
i =

(
r

m

)
qmi (1− qi)r−m .

We have already constructed a coupling of the (unconditional) distribution of W with
its conditional distribution given that the i-th bin is empty. Continuing from the balls
rearranged in the latter way, further pick m balls uniformly at random and relocate them
into the i-th bin. This makes a coupling with the conditional distribution given X

(m)
i = 1.

Remark 2.4.9. Notice that the latter coupling is not entirely optimal. A more refined
coupling would go as follows: consider the number of balls in the i-th bin. If there are
exactly m balls, leave it as it is. If there are more, suitably relocate the excess balls into
other bins. If they are less, pick a suitable number of balls from other bins uniformly at
random and relocate them into the i-th bin. However, in this case, the right hand side of
(2.3.1) is more complicated to estimate and we do not benefit on the rate of convergence.
Therefore, we keep the afore-mentioned two-step coupling.

Let X̃
(m)
ij denote the indicator of the event that the j-th bin contains exactly m balls after

relocating all balls from the i-th bin. Next, let ˜̃X
(m)
ij denote the indicator of the same

event after relocating m balls into the i-th bin. As usual, let W̃
(m)
i :=

∑
j∈I \{i} X̃

(m)
ij and

˜̃W
(m)
i :=

∑
j∈I \{i}

˜̃X
(m)
ij . The (unconditional) distribution of 1 + ˜̃W

(m)
i agrees with the

conditional distribution of W given Xi = 1.

Now estimate∣∣W (m) − ˜̃W
(m)
i

∣∣ ≤ ∣∣W (m) − W̃ (m)
i

∣∣+
∣∣W̃ (m)

i − ˜̃W
(m)
i

∣∣
≤ Xi +

∑
j∈I \{i}

[∣∣X(m)
j − X̃(m)

ij

∣∣+
∣∣X̃(m)

ij −
˜̃X

(m)
ij

∣∣]
= Xi +

∑
j∈I \{i}

[(
X

(m)
j −X(m)

j X̃
(m)
ij

)
+
(
X̃

(m)
ij −X

(m)
j X̃

(m)
ij

)
+
(
X̃

(m)
ij − X̃

(m)
ij

˜̃X
(m)
ij

)
+
( ˜̃X

(m)
ij − X̃

(m)
ij

˜̃X
(m)
ij

)]
(notice that X

(m)
j ≥ X

(m)
j X̃

(m)
ij and similarly for the other differences).

Now compute the expectations of all random variables, i. e., the probabilities of all un-
derlying events.

• Recall that EX(m)
j = E p(m)

i =

(
r

m

)
qmi (1− qi)r−m.

• After the first rearrangement, each ball is in the j-th bin with probability qj/(1−qi),
where the balls are independent. Therefore,

E X̃(m)
ij =

(
r

m

)(
qj

1− qi

)m(
1− qj

1− qi

)r−m
.



M. RAIČ: STEIN’S METHOD 28

• In the second rearrangement, m balls are selected to be relocated to the i-th bin.
Given the choice of these m balls, each one of the rest is in the j-th bin with
probability qj/(1− qi), where the balls are again independent. Therefore,

E ˜̃X
(m)
ij =

(
r −m
m

)(
qj

1− qi

)m(
1− qj

1− qi

)r−2m

.

• The product X
(m)
j X̃

(m)
ij is the indicator of the event that in the j-th bin, there are

exactly m balls before and after the first rearrangement. There are
(
r
m

)
choices of

balls that first land in the j-th bin, and for each of them, this occurs with probability
qj. Given the choice of these m balls, each one of the remaining r−m balls lands in
the j-th bin with probability qj/(1− qi) after the first rearrangement, and the balls
are independent. Therefore,

E
[
X

(m)
j

˜̃X
(m)
ij

]
=

(
r

m

)
qmj

(
1− qj

1− qi

)r−m
.

• The product X̃
(m)
ij

˜̃X
(m)
ij is the indicator of the event that in the j-th bin, there

are exactly m balls before and after the second rearrangement. Recall that in the
second rearrangement, m balls are selected to be relocated to the i-th bin. We can
choose these balls first. None of these balls should be in the j-th bin after the first
rearrangement. Given the selection of these m balls, exactly m among the remaining
r−m balls should be in the j-th bin after the first (and the second) rearrangement.
Since the selection of the balls to be relocated in the second turn is independent of
the location of the balls after the first rearrangement, we find that

E
[
X̃

(m)
ij

˜̃X
(m)
ij

]
=

(
r −m
m

)(
qj

1− qi

)m(
1− qj

1− qi

)r−m
.

Now estimate

E
(
X

(m)
j −X(m)

j X̃
(m)
ij

)
=

(
r

m

)
qmj

[
(1− qj)r−m −

(
1− qj

1− qi

)r−m]
=

(
r

m

)
qmj

[
(1− qj)r−m −

(
1− qj −

qiqj
1− qi

)r−m]
=

(
r

m

)
qmj (1− qj)r−m

[
1−

(
1− qiqj

(1− qi)(1− qj)

)r−m]
≤ (r −m)

qiqj
(1− qi)(1− qj)

(
r

m

)
qmj (1− qj)r−m ,
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E
(
X̃

(m)
ij −X

(m)
j X̃

(m)
ij

)
=

(
r

m

)(
1− qj

1− qi

)r−m [(
qj

1− qi

)m
− qmj

]
=

(
r

m

)(
qj

1− qi

)m(
1− qj

1− qi

)r−m [
1− (1− qi)m

]
≤ mqi

(
r

m

)(
qj

1− qi

)m(
1− qj

1− qi

)r−m
,

E
(
X̃

(m)
ij − X̃

(m)
ij

˜̃X
(m)
ij

)
=

[(
r

m

)
−
(
r −m
m

)](
qj

1− qi

)m(
1− qj

1− qi

)r−m
=

r−1∑
k=r−m

(
k

m− 1

)(
qj

1− qi

)m(
1− qj

1− qi

)r−m
≤ m

(
r − 1

m− 1

)(
qj

1− qi

)m(
1− qj

1− qi

)r−m
=
m2

r

(
r

m

)(
qj

1− qi

)m(
1− qj

1− qi

)r−m
.

E
( ˜̃X

(m)
ij − X̃

(m)
ij

˜̃X
(m)
ij

)
=

(
r −m
m

)(
qj

1− qi

)m(
1− qj

1− qi

)r−2m [
1−

(
1− qj

1− qi

)m]
≤ m

qj
1− qi

(
r −m
m

)(
qj

1− qi

)m(
1− qj

1− qi

)r−2m

.

Collecting all together, we obtain (provided that m ≥ 1)

E
∣∣W (m) − ˜̃W

(m)
i

∣∣ ≤ p
(m)
i +

∑
j∈I \{i}

p
(m)
ij

[
(r −m)qiqj

1− qj
+mqi +m

qj
1− qi

+
m2

r

]
,

where

p
(m)
ij :=

(
r

m

)(
qj

1− qi

)m
(1− qj)r−2m .

Letting λm =
∑

i∈I p
(m)
i and applying Theorem 2.3.2, we obtain the following result:

Proposition 2.4.10. For m ≥ 1, the distribution of the number W (m) of the bins with
exactly m balls satisfies

dTV

(
L
(
W (m)

)
, Po(λm)

)
≤ 1− e−λm

λm

∑
i∈I

((
p

(m)
i

)2

+
∑

j∈I \{i}

p
(m)
i p

(m)
ij

[
(r −m)qiqj

1− qj
+mqi +m

qj
1− qi

+
m2

r

])
.

(2.4.9)
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Now consider again the case where all bins are hit with equal probabilities, that is, qi = 1
n
,

where n denotes the number of bins. In this case, (2.4.9) reduces to

dTV

(
L
(
W (m)

)
, Po(λm)

)
≤ 1− e−λm

λm

[
n
(
p

(m)
1

)2

+

(
r + 2m(n− 1) +

m2n(n− 1)

r

)
p

(m)
1 p

(m)
12

]
,

where

p
(m)
1 =

(
r

m

)
1

nm

(
1− 1

n

)r−m
, p

(m)
12 =

(
r

m

)
1

(n− 1)m

(
1− 1

n

)r−2m

, λm = n p
(m)
1 .

Suppose that n ≥ 2 and r ≥ m. Letting a := r/n, observe that

p
(m)
i ≤ rm

m!

1

nm
e−a

(
n

n− 1

)m
≤ (2a)m

m!
e−a

and

p
(m)
ij ≤

rm

m!

1

nm
e−a

(
n

n− 1

)3m

≤ (8a)m

m!
e−a

Thus, λ is of order at most n ame−a. If this is the actual order, then, by Remark 2.2.3,
1−e−λ
λ

is of order min
{

1, ea

nam

}
. Again, this order is an upper bound, as shown in the

following generalization of Lemma 2.4.7:

Lemma 2.4.11. For each m ∈ N0, there exists a constant Bm, such that, letting λ =(
an
m

)
1

nm−1

(
1− 1

n

)an−m
, we have 1−e−λ

λ
≤ min

{
1, Bm ea

nam

}
for all n ≥ 2 and a > 0.

Corollary 2.4.12. Let W (m) and λm be as above. For each m ∈ N0, there exists a
constant Cm, such that

dTV

(
L
(
W (m)

)
, Po(λm)

)
≤ Cm

((
am+1 + am−1

)
e−a min

{
1, n ame−a

})
.

for all n ≥ 2 and r ≥ 0, where a = r/n. In particular, the total variation error in the
Poisson approximation tends to zero uniformly in n as a → ∞. For m ≥ 2, this is also
true as a→ 0.

Remark 2.4.13. For m = 1, the error does not tend to zero uniformly in n as a → 0.
As a counterexample, consider the case where r ≥ 1 is constant, while n tends to the
infinity. In this case, the number of bins with exactly one ball tends to the constant r.
Since for r ≥ 1, the total variation distance between the Dirac measure at r and any
Poisson distribution is uniformly bounded away from zero, the total variation error in the
Poisson approximation cannot tend to zero.

Proof of Lemma 2.4.11. In view of Lemma 2.4.7, it suffices to prove the assertion for
m ≥ 1. First, assume that a ≤ n/2. Recalling (2.4.8), we find that

λ ≥ n
rm

m!

(
1− 1

r

)(
1− 2

r

)
· · ·
(

1− m− 1

r

)
1

nm
e−a−2a/n

≥ n
rm

m!

(
1− 1

m

)(
1− 2

m

)
· · ·
(

1− m− 1

m

)
1

nm
e−a−1

≥ n
( a
m

)m
e−a−1 .
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Recalling Remark 2.2.3, this implies 1−e−λ
λ
≤ min

{
1, e

a+1

n

(
m
a

)m}
. On the other hand,

for a ≥ n/2, observe that ea+1

n

(
m
a

)m ≥ mm ea+1

2am+1 ≥ mm em+2

2(m+1)m+1 ≥ em+1

2(m+1)
≥ e

2
≥ 1, so that

1−e−λ
λ
≤ 1 = min

{
1, e

a+1

n

(
m
a

)m}
. This proves the result with Bm = emm.



Chapter 3

Normal approximation

3.1 Decomposable random variables

In Section 1.2, we derived that for a standard normal random variable W , the Stein
expectation

E
[
f ′(W )− f(W )W

]
(3.1.1)

vanishes for all continuously differentiable functions f : R → R of polynomial growth.
Here, we shall first show that the Stein expectation can be small for random variables
W featuring a certain dependence structure. In the next section, we shall show that this
implies proximity to the standard normal distribution in a certain metric.

In Subsection 2.3.2, we have shown that Poisson approximation by Stein’s method works
well for locally dependent random variables and, more generally, random variables which
can be decomposed as in (2.3.2). Here, we adjust this approach to the case of normal
approximation. This adjustment is due to Barbour, Karoński and Ruciński [6].

Consider a random variable W with EW = 0 and var(W ) = 1 (this, of course, means
that E(W 2) <∞). Suppose that

W =
∑
i∈I

Xi , (3.1.2)

where I is a countable set and where we assume that
∑

i∈I E |Xi| <∞,∑
i∈I E

(
|Xi| |W |

)
< ∞ and EXi = 0 for all i ∈ I (notice that the first condition

guarantees the almost sure existence of the random sum
∑

i∈I Xi). Then the variance
can be expressed as

1 = var(W ) = E(W 2) =
∑
i∈I

E(XiW ) .

For a continuously differentiable function f with bounded derivative, this leads to the
following expression of the Stein expectation:

E
[
f ′(W )− f(W )W

]
=
∑
i∈I

E
[
f ′(W )E(XiW )− f(W )Xi

]

32
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(notice that f is of at most linear growth, that is, there exist C0 and C1, such that
|f(w)| ≤ C0 + C1|w| for all w ∈ R). Now suppose that for each i ∈ I , W can be
decomposed as

W = Wi +Ri , (3.1.3)

where Wi is independent of Xi and where E
(
|Xi| |Ri|

)
< ∞. Then we have E(XiW ) =

E(XiRi). Next, by the fundamental theorem of calculus, we have

f(W ) = f(Wi) +

∫ W

Wi

f ′(t) dt = f(Wi) +

∫ 1

0

f ′(Wi + tRi)Ri dt .

Assuming in addition that
∑

i∈I E
(
|Xi| |Ri|

)
<∞ and combining all together, we express

the Stein expectation as

E
[
f ′(W )− f(W )W

]
=
∑
i∈I

E
[
f ′(W )E(XiRi)− f(Wi)Xi −

∫ 1

0

f ′(Wi + tRi)XiRi dt

]
.

By independence and since EXi = 0, the second term vanishes. Taking a random variable
θ1, which is uniformly distributed over [0, 1] and independent of all other random variables,
we can rewrite the Stein expectation as

E
[
f ′(W )− f(W )W

]
=
∑
i∈I

E
[
f ′(W )E(XiRi)− f ′(Wi + θ1Ri)XiRi

]
.

Now suppose in addition that the random variables Ri can be expressed as sums

Ri =
∑
j∈Ii

Xij ,

where we assume that
∑

i∈I

∑
j∈Ji

E
(
|Xi| |Xij|

)
< ∞. Then we can further rewrite the

Stein expectation as

E
[
f ′(W )− f(W )W

]
=
∑
i∈I

∑
j∈Ji

E
[
f ′(W )E(XiXij)− f ′(Wi + θ1Ri)XiXij

]
.

Next, suppose that for each i ∈ I and j ∈Ji, Wi can be further decomposed as

Wi = Wij +Rij , (3.1.4)

where Wij is independent of the pair (Xi, Xij). Assuming in addition that f is twice
continuously differentiable with bounded second derivative and∑

i∈I

∑
j∈Ji

E
(
|Xi| |Xij|

)
E |Ri +Rij| <∞ ,

∑
i∈I

∑
j∈Ji

E
(
|Xi| |Xij| |θ1Ri +Rij|

)
<∞ ,
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we can further expand the Stein expectation as

E
[
f ′(W )− f(W )W

]
=
∑
i∈I

∑
j∈Ji

E
[
f ′(Wij)E(XiXij) + f ′′(Wij + θ2Rij + θ2Ri)(Ri +Rij)E(XiXij)

− f ′(Wij)XiXij − f ′′(Wij + θ2Rij + θ1θ2Ri)XiXij(θ1Ri +Rij)
]
,

where θ2 is another random variable which is uniformly distributed over [0, 1] and is
independent of all other random variables. Because of independence, the first and the
third term cancel, so that the Stein expectation can be expressed as

E
[
f ′(W )− f(W )W

]
=
∑
i∈I

∑
j∈Ji

E
[
f ′′(Wij + θ2Rij + θ2Ri)(Ri +Rij)E(XiXij)

− f ′′(Wij + θ2Rij + θ1θ2Ri)XiXij(θ1Ri +Rij)
]
.

(3.1.5)

However, the assumptions implying the preceding identity can be relaxed to a certain
extent. First, the assumption that f is twice continuously differentiable with bounded
second derivative can be replaced by the assumption that f is differentiable and f ′ is
Lipschitz (see Proposition B.1.9). This is because the fundamental theorem of calculus
remains true for Lipschitz test functions (and more generally for the absolutely continuous
functions): see Section B.1. This allows us to bound the Stein expectation in terms of

M2(f) := ess sup |f ′′| = sup
x 6=y

|f ′(x)− f ′(y)|
|x− y|

,

where f ′ is the classical derivative of f and f ′′ is an almost-everywhere derivative of f ′.

In addition to the relaxed assumption on differentiability of f , one can also drop certain
other assumptions. The following assertion makes it precise.

Proposition 3.1.1. Let W be decomposed as follows:

W =
∑
i∈I

Xi ,

W = Wi +Ri , where Wi is independent of Xi ,

Ri =
∑
j∈Ji

Xij ,

Wi = Wij +Rij , where Wij is independent of (Xi, Xij) .

Next, suppose that EXi = 0 for all i ∈ I and var(W ) = 1, and that∑
i∈I

E |Xi| <∞ ,
∑
i∈I

∑
j∈Ji

E
(
|Xi| |Xij|

)
<∞ ,

∑
i∈I

∑
j∈Ji

E
(
|Xi| |Xij| |Rij|

)
<∞ ,

∑
i∈I

∑
j∈Ji

E
(
|Xi| |Xij| |Ri +Rij|

)
<∞ ,

∑
i∈I

∑
j∈Ji

E
(
|Xi| |Xij|

)
E |Ri +Rij| <∞ .

(3.1.6)
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Finally, take a function f : R→ R with M2(f) <∞, where M2(f) is defined as in (B.1.3).
Then (3.1.5) remains true and we can estimate∣∣∣E[f ′(W )−f(W )W

]∣∣∣ ≤M2(f)
∑
i∈I

∑
j∈Ji

E
[
|Xi| |Xij|

(
E |Ri+Rij|+ 1

2
|Rij|+ 1

2
|Ri+Rij|

)]
.

(3.1.7)

Before proving the preceding assertion, we formulate a couple of remarks. First, we
no longer assume that f ′ is bounded. In particular, this allows us to apply Proposi-
tion 3.1.1 with the function f(w) = w|w|: this function is differentiable with derivative
f ′(w) = 2|w|, which is Lipschitz, but not bounded. This implies that W has finite third
absolute moment. More precisely, with f as above, the following result is immediate from
Proposition 3.1.1:

Corollary 3.1.2. If W is as in Proposition 3.1.1, then

E(|W |3) ≤ 2E |W |+ 2
∑
i∈I

∑
j∈Ji

E
[
|Xi| |Xij|

(
|Ri +Rij|+ 1

2
|Rij|+ 1

2
|Ri +Rij|

)]
.

Remark 3.1.3. If W is standard normal, then E |W | = 2/
√

2π and E
(
|W |3

)
= 4/

√
2π,

so that E
(
|W |3

)
= 2E |W |.

Now we turn to the proof of Proposition 3.1.1. As the first step, we formulate and prove
the the following auxiliary result:

Lemma 3.1.4. Let f : R → R be absolutely continuous and let h : [0,∞) → [0,∞)
be non-decreasing. Suppose that |f ′| ≤ h. Finally, let a random variable W be as in
Proposition 3.1.1, and let θ1 be uniformly distributed over [0, 1] and independent of all
other random variables. If∑

i∈I

∑
j∈Ji

E
[
h(|Wi + θ1Ri|)|Xi| |Xij|

]
<∞ , (3.1.8)

then E
∣∣f(W )W

∣∣ <∞ and

E
[
f(W )W

]
=
∑
i∈I

∑
j∈Ji

E
[
f ′(Wi + θ1Ri)XiXij

]
. (3.1.9)

Proof. Equation (3.1.9) is derived at the beginning of this section, but under stronger
conditions. A closer look reveals that the calculations are still valid if W is as in Proposi-
tion 3.1.1 and f is Lipschitz (recall that in this case, f has an almost-everywhere derivative
and satisfies the fundamental theorem of calculus – see Section B.1).

Now take any absolutely continuous function f with |f ′| ≤ h. For each n ∈ N, define
function ψn : [0,∞) → [0, 1] as ψn(t) := 1 for t ≤ n, ψn(t) := 2 − t/n for n ≤ t ≤ 2n
and ψn(t) := 0 for t ≥ 2n. Observe that ψn is well defined and that for each fixed n, the
expression t ψn(t) is bounded in t. Clearly, ψ is absolutely continuous with ψ′n(t) = 0 for
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t < n, ψ′n(t) = −1/n for n < t < 2n and ψ′n(t) = 0 for t > 2n. Observe that ψ′ can be
extended to [0,∞) so that the expression t |ψ′n(t)| is uniformly bounded in t and n.

Now let fn(w) := f
(
ψn(|w|)w

)
. Applying the chain rule (for details on the validity in the

context of absolutely continuous functions, see Corollary 6.5.4 of [20]), we find that fn is
absolutely continuous with

f ′n(w) = f ′
(
ψn(|w|)w

)(
ψ′n(|w|)|w|+ ψn(|w|)

)
.

Since t |ψ′n(t)| is uniformly bounded in t and n and since h is non-decreasing, there exists
a constant C, such that |f ′n(w)| ≤ C h(|w|) for all n and w.

For each fixed n, the expression ψn(|w|)w is bounded in w ∈ R. Since f ′ is bounded on
bounded sets, |fn(w)| is also bounded in w ∈ R. Therefore, (3.1.9) applies with fn in
place of f .

Now observe that the functions fn converge pointwise to f and that their derivatives f ′n
converge pointwise to f ′ as well. Recalling (3.1.8) and applying the dominated convergence
theorem, we obtain

lim
n→∞

E
[
fn(W )W

]
= lim

n→∞

∑
i∈I

∑
j∈Ji

E
[
f ′n(Wi + θ1Ri)XiXij

]
=
∑
i∈I

∑
j∈Ji

E
[
f ′(Wi + θ1Ri)XiXij

]
.

(3.1.10)

Now consider the function f̃ : R→ R defined by f̃(w) :=
∫ w

0
h(|t|) dt. Observe that f̃ is

absolutely continuous with f̃ ′(w) = h(|w|) and that f̃(w)w ≥ 0 for all w ∈ R. Letting
f̃n(w) := f̃

(
ψn(|w|)w

)
, we also have f̃n(w)w ≥ 0 for all w ∈ R. In addition, (3.1.10)

applies with f̃n and f̃ in place of fn and f . Combining with Fatou’s lemma, we find that

E
[
f̃(W )W

]
≤ lim

n→∞
E
[
f̃n(W )W

]
=
∑
i∈I

∑
j∈Ji

E
[
f̃ ′(Wi + θ1Ri)XiXij

]
≤
∑
i∈I

∑
j∈Ji

E
[
h(|Wi + θ1Ri|)|Xi| |Xij|

]
<∞ .

(3.1.11)

Now estimate

|fn(w)| =
∣∣f(ψn(|w|)w

)∣∣ ≤ |f(0)|+
∫ ψn(|w|) |w|

0

h(t) dt ≤ |f(0)|+
∫ |w|

0

h(t) dt ,

|fn(w)w| ≤ |f(0)| |w|+ |w|
∫ |w|

0

h(t) dt ≤ |F (0)| |w|+ f̃(w)w .

Recalling (3.1.11), it follows that the sequence of random variables fn(W )W is dominated
by a non-negative random variable with finite expectation. Applying the dominated
convergence theorem and combining with (3.1.10), finiteness of E

∣∣f(W )W
∣∣ along with

(3.1.9) follows.
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Proof of Proposition 3.1.1. We shall go from (3.1.5) backwards. Define

ρ :=
∑
i∈I

∑
j∈Ji

E
[
f ′′(Wij + θ2Rij + θ2Ri)(Ri +Rij)E(XiXij)

− f ′′(Wij + θ1θ2Ri + θ2Rij)XiXij(θ1Ri +Rij)
]
.

(3.1.12)

Noting also that
θ1Ri +Rij = (1− θ1)Rij + θ1(Ri +Rij) , (3.1.13)

and applying (3.1.6), we find that the right hand side of (3.1.12) exists, along with the
bound

|ρ| ≤M
∑
i∈I

∑
j∈Ji

E
[
|Xi| |Xij|

(
E |Ri +Rij|+ 1

2
|Rij|+ 1

2
|Ri +Rij|

)]
.

It remains to show that E
∣∣f ′(W )− f(W )W

∣∣ <∞ and ρ = E
[
f ′(W )− f(W )W

]
. Observe

first that

E
(
|Xi| |Xij| |Wij|

)
= E

(
|Xi| |Xij|

)
E |Wij| =

≤ E
(
|Xi| |Xij|

)
E |W |+ E

(
|Xi| |Xij)

]
E |Ri +Rij| .

Applying (3.1.6), we find that∑
i∈I

∑
j∈Ji

E
(
|Xi| |Xij| |Wij|

)
=
∑
i∈I

∑
j∈Ji

E
(
|Xi| |Xij|

)
E |Wij| <∞ .

Noting also that
|f ′(w)| ≤ |f ′(0)|+M |w| , (3.1.14)

we find that ∑
i∈I

∑
j∈Ji

E
(
|f ′(Wij)| |Xi| |Xij|

)
<∞

and ∑
i∈I

∑
j∈Ji

E
[
|f ′(Wij)|

]∣∣E(XiXij)
∣∣ <∞ .

Moreover,

ρ =
∑
i∈I

∑
j∈Ji

E
[
f ′(Wij)E(XiXij) + f ′′(Wij + θ2Rij + θ2Ri)(Ri +Rij)E(XiXij)

− f ′(Wij)XiXij − f ′′(Wi + θ2Rij + θ1θ2Ri)XiXij(θ1Ri +Rij)
]

(and all expectations exist and the sum converges). Next, since the fundamental theorem
of calculus holds for f ′ and f ′′, we have∑

i∈I

∑
j∈Ji

E
[
|f ′(W )| |E(XiXij)|

]
≤
∑
i∈I

∑
j∈Ji

(
E
[
|f ′(Wij)| |E(XiXij)|

]
+M E

(
|Xi| |Xij|

)
E |Ri +Rij|

])
<∞ .
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Similarly, recalling (3.1.13), we have∑
i∈I

∑
j∈Ji

E
[
|f ′(Wi + θ1Ri)| |Xi| |Xij|

]
≤
∑
i∈I

∑
j∈Ji

(
E
[
|f ′(Wij)| |Xi| |Xij|

]
+ 1

2
M E

[
|Xi| |Xij|

(
|Rij|+ |Ri +Rij|

)])
<∞ .

In particular, the choice f(w) = 1
2
w2 gives∑

i∈I

∑
j∈Ji

E
(
|Wi + θ1Ri| |Xi| |Xij|

)
<∞ . (3.1.15)

Moreover,

ρ =
∑
i∈I

∑
j∈Ji

E
[
f ′(W )E(XiXij)− f ′(Wi + θ1Ri)XiXij

]
.

Recalling (3.1.14) and applying Lemma 3.1.4 with h(t) = f(0) + Mt, making use of
(3.1.15), we obtain that E

∣∣f(W )W
∣∣ < ∞ and E

[
f(W )W

]
=
∑

i∈I

∑
j∈Ji

E
[
f ′(Wi +

θ1Ri)XiXij

]
. Finally, applying Lemma 3.1.4 with f(w) = w, we find that E(W 2) =∑

i∈I

∑
j∈Ji

E(XiXij). Together with (3.1.14), this completes the proof.

3.2 Solution to the Stein equation

As indicated in Section 1.2, the proximity to the standard normal distribution can be
assessed as follows: for a test function h, find a function f solving the Stein equation

f ′(w)− f(w)w = h(w)−Nh (3.2.1)

where

Nh :=
〈
h , N (0, 1)

〉
=

1√
2π

∫ ∞
−∞

h(x) e−x
2/2 dx .

Taking a random variable W , we then have

E
[
f ′(W )− f(W )W

]
= E

[
h(W )

]
−Nh . (3.2.2)

Estimating the left hand side for sufficiently many test functions h, we are able to bound
the error in the normal approximation with respect to a suitable metric. In particular, if
W is as in Proposition 3.1.1 and if there exists a class H of test functions, such that for
each h ∈ H , there exists f which solves (3.2.1) and satisfies M2(f) ≤ 1, then we have a
bound

dH

(
L (W ), N (0, 1)

)
≤
∑
i∈I

∑
j∈Ji

E
[
|Xi| |Xij|

(
E |Ri +Rij|+ 1

2
|Rij|+ 1

2
|Ri +Rij|

)]
,

where dH is defined as in (A.1.1).
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Equation (3.2.1) is an ordinary differential equation of the first order. Such differential
equations can be solved in two steps: first, we solve the homogeneous part, then we
perform the variation of constant. A simple calculation shows that the solution to the
homogeneous part

f ′H(w)− fH(w)w = 0 (3.2.3)

is fH(w) = C ew
2/2. The solution to the original equation (3.2.1) can be seeked as f(w) =

k(w) ew
2/2, where k is now a function. Another simple calculation shows that k must be

the indefinite integral

k(w) =

∫ (
h(x)−Nh

)
e−x

2/2 dx .

However, unless limw→±∞ k(w) = 0, f grows very rapidly, so that there is no hope for f ′ to
be Lipschitz. Since

∫∞
−∞

(
h(x)−Nh

)
dx = 0, limw→−∞ k(w) = 0 implies limw→∞ k(w) = 0

and the ‘tame’ solution to (3.2.1) can be expressed as

f(w) = ew
2/2

∫ w

−∞

(
h(x)−Nh

)
e−x

2/2 dx = ew
2/2

∫ ∞
w

(
Nh− h(x)

)
e−x

2/2 dx . (3.2.4)

We summarize the preceding calculations into the following statement:

Proposition 3.2.1. For any measurable function h : R→ R with N|h| <∞, the function
f defined by (3.2.4) is an almost-everywhere solution to the Stein equation (3.2.1), i. e.,
f is absolutely continuous and the function w 7→ f(w)w + h(w) − Nh is an almost-
everywhere derivative of f . If h is continuous, f is a classical solution, i. e., continuously
differentiable and (3.2.1) holds for all w ∈ R.

Denoting the standard normal density by

φ(z) :=
1√
2π

e−z
2/2 ,

we can also write

f(w) =
1

φ(w)

∫ w

−∞

(
h(x)−Nh

)
φ(x) dx =

1

φ(w)

∫ ∞
w

(
Nh− h(x)

)
φ(x) dx .

Of course, we can also take affine combinations of the two forms, that is, for each a ∈ R,
we have

f(w) =
1

φ(w)

(
(1− a)

∫ w

−∞

(
h(x)−Nh

)
φ(x) dx+ a

∫ ∞
w

(
Nh− h(x)

)
φ(x) dx

)
=

1

φ(w)

(
(1− a)

∫ w

−∞
h(x)φ(x) dx− a

∫ ∞
w

h(x)φ(x) dx

)
+
[
a(1− Φ(w))− (1− a)Φ(w)

]
Nh ,

(3.2.5)

where

Φ(w) :=

∫ ∞
−∞

φ(x) dx
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is the standard normal cumulative distribution function. Choosing a = Φ(w), the second
term in the final expression of (3.2.5) vanishes and we obtain the following form:

f(w) =
1− Φ(w)

φ(w)

∫ w

−∞
h(x)φ(x) dx− Φ(w)

φ(w)

∫ ∞
w

h(x)φ(x) dx .

Noting that 1− Φ(w) = Φ(−w) and introducing the Mills ratio:

ψ(w) :=
Φ(w)

φ(w)

we can rewrite the solution as

f(w) = ψ(−w)

∫ w

−∞
h(x)φ(x) dx− ψ(w)

∫ ∞
w

h(x)φ(x) dx .

In view of Proposition 3.1.1, it is beneficial to study the behaviour of the second derivative,
including the general case where f ′ is absolutely continuous. Differentiating the preceding
formula, we obtain

f ′(w) = −ψ′(−w)

∫ w

−∞
h(x)φ(x) dx+ ψ(−w)h(w)φ(w)

− ψ′(w)

∫ ∞
w

h(x)φ(x) dx+ ψ(w)h(w)φ(w)

= h(w)− ψ′(−w)

∫ w

−∞
h(x)φ(x) dx− ψ′(w)

∫ ∞
w

h(x)φ(x) dx ,

(3.2.6)

where the last equality follows from the identity Φ(w) + Φ(−w) = 1 (this is also Propo-
sition C.2.3 for the case r = 0).

Remark 3.2.2. Similarly as in Proposition 3.2.1, Formula 3.2.6 can be interpreted in two
ways: if h is continuous, f ′ defined as in (3.2.6) is the classical derivative of f , whereas
in the general case, f is absolutely continuous and f ′ is an almost-everywhere derivative
of f .

Now assume that h is absolutely continuous (it must be if so is f ′) and that it is of
polynomial growth. In this case, we can apply the integration by parts formula (see
Theorem 6.4.6 of Heil [20]), where we differentiate h and integrate φ. However, in the
first integral of (3.2.6), we integrate φ(x) to Φ(x), while in the second one, we integrate
φ(x) to −Φ(−x). Noting that the polynomial growth of h along with Corollary C.2.2
implies limw→−∞ h(w) Φ(w) = 0 and limw→∞ h(w) Φ(−w) = 0, we obtain

f ′(w) = h(w)− ψ′(−w)h(w) Φ(w) + ψ′(−w)

∫ w

−∞
h′(x) Φ(x) dx

− ψ′(w)h(w) Φ(−w)− ψ′(w)

∫ ∞
w

h′(x) Φ(−x) dx

= ψ′(−w)

∫ w

−∞
h′(x) Φ(x) dx− ψ′(w)

∫ ∞
w

h′(x) Φ(−x) dx ,

(3.2.7)
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where the last inequality is due to Proposition C.2.3 for r = 1. Differentiating (3.2.7), we
find that

f ′′(w) = −ψ′′(−w)

∫ w

−∞
h′(x) Φ(x) dx+ ψ′(−w)h′(w) Φ(w) dw

− ψ′′(w)

∫ ∞
w

h′(x) Φ(−x) dx+ ψ′(w)h′(w) Φ(−w)

= h′(w)− ψ′′(−w)

∫ w

−∞
h′(x) Φ(x) dx− ψ′′(w)

∫ ∞
w

h′(x) Φ(−x) dx ,

(3.2.8)

where the last inequality again follows from Proposition C.2.3 for r = 1. Again, if h′ is
continuous, f ′′ is the classical derivative of f ′, whereas in the general case, f ′ is absolutely
continuous and f ′′ is an almost-everywhere derivative of f ′.

The preceding formula allows us to bound M2(f) in terms of M1(f). For random variables
decomposed according to Barbour, Karoński and Ruciński, this allows us to bound the
error in the normal approximation in the Wasserstein metric.

Theorem 3.2.3. For any function h : R→ R with M1(h) <∞, the function f defined by
(3.2.4) is a classical solution to the Stein equation (3.2.1), which satisfies M2(f) ≤M1(h).

Corollary 3.2.4. For a random variable W decomposed as in Proposition 3.1.1, we have

dW

(
L (W ), N (0, 1)

)
≤
∑
i∈I

∑
j∈Ji

E
[
|Xi| |Xij|

(
2E |Ri+Rij|+ |Rij|+ |Ri+Rij|

)]
. (3.2.9)

Proof of Theorem 3.2.3. Since M1(h) < ∞, h is absolutely continuous and of lin-
ear growth. Consequently, N|h| < ∞ and Proposition 3.2.1 applies. Moreover, since
h is absolutely continuous and of linear growth, the derivation of (3.2.8) is valid. By
Proposition C.1.5 and Proposition C.2.3 for r = 2, we can estimate

|f ′′(w)| ≤M1(h)

[
1 + ψ′′(−w)

∫ w

−∞
Φ(x) dx+ ψ′′(w)

∫ ∞
w

Φ(−x) dx

]
= 2M1(f) .

Taking the supremum over w, the proof is complete.

Example 3.2.5. Let ξ1, ξ2, . . . be independent and identically distributed random vari-
ables with E ξ1 = 0, var(ξ1) = 1 and E |ξ1|3 <∞. Then the rescaled sum

W (n) :=
ξ1 + ξ2 + · · ·+ ξn√

n

satisfies EW (n) = 0 and var
(
W (n)

)
= 1, and can be trivially decomposed by setting

I (n) := {1, 2, . . . , n}, X(n)
i := ξi/

√
n, R

(n)
i := X

(n)
i , J (n)

i := {0}, X(n)
i0 := X

(n)
i and

R
(n)
i0 := 0. Corollary 3.2.4 yields

dW

(
L
(
W (n)

)
, N (0, 1)

)
≤

n∑
i=1

(
2E
(
X

(n)
i

)2 E
∣∣X(n)

i

∣∣+ E
∣∣X(n)

i

∣∣3) .
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By Jensen’s inequality, we have E
∣∣X(n)

i

∣∣ ≤ (E∣∣X(n)
i

∣∣3)1/3

and E
(
X

(n)
i

)2 ≤
(
E
∣∣X(n)

i

∣∣3)2/3

,

leading to

dW

(
L
(
W (n)

)
, N (0, 1)

)
≤ 3

n∑
i=1

E
∣∣X(n)

i

∣∣3 =
3E |ξ1|3√

n
.

This is the typical rate of convergence in the central limit theorem and can in general not
be improved. As an example, take P(ξ1 = 1) = P(ξ1 = −1) = 1/2. For even n, W (n) takes
values in the set

{
2k/
√
n ; k ∈ Z

}
. Now define functions fn : R→ R by fn(w) :=

∣∣w− 2k√
n

∣∣
for 2k−1√

n
≤ w ≤ 2k+1√

n
, where k ∈ Z. Then we have E

[
fn
(
W (n)

)]
= 0. Observe that

N fn =

∫ ∞
−∞

fn(x)φ(x) dx

=
1

2

∫ ∞
−∞

[
fn(x)φ(x) dx+ fn

(
x+

1√
n

)
φ

(
x+

1√
n

)]
dx

=
1

2

∫ ∞
−∞

[
fn(x)φ(x) dx+ fn

(
x+

1√
n

)
φ

(
x+

1√
n

)]
dx

=
1

2

∫ ∞
−∞

[
fn(x) + fn

(
x+

1√
n

)]
φ(x) dx

+
1

2

∫ ∞
−∞

fn

(
x+

1√
n

)[
φ

(
x+

1√
n

)
− φ(x)

]
dx

=
1

2
√
n

+
1

2
√
n

∫ ∞
−∞

fn

(
x+

1√
n

)∫ 1

0

φ′
(
x+

t√
n

)
dtdx .

Noting that 0 ≤ fn(x) ≤ 1/
√
x for all x and that the function φ′ is bounded, we find

that limn→∞N fn
√
n = 1/2. Therefore, for each ε > 0, there exists n0 ∈ N, such that

dW

(
L (Wn), N (0, 1)

)
≥ 1−ε

2
√
n
. This proves that the rate of 1/

√
n cannot be improved.

Remark 3.2.6. The bound in Theorem 3.2.3 is sharp: consider functions

hn(w) :=


w + 2

n
; w ≤ − 1

n

−w ; − 1
n
≤ w ≤ 1

n

w − 2
n

; w ≥ 1
n
.

Clearly, M1(hn) = 1. Next, observe that the underlying functions f ′′n are continuous at
the origin and we have

f ′′n(0) = −1− ψ′′(0)

∫ 0

−∞
h′n(x) Φ(x) dx− ψ′′(0)

∫ ∞
0

h′n(x) Φ(−x) dx .

Therefore,

M2(fn) ≥
∣∣∣∣1 + ψ′′(0)

∫ 0

−∞
h′n(x) Φ(x) dx+ ψ′′(0)

∫ ∞
0

h′n(x) Φ(−x) dx

∣∣∣∣ .
The functions h′n are uniformly bounded and converge pointwise to the constant 1 (except
at 0, where they converge to −1). By the dominated convergence theorem, the right hand



M. RAIČ: STEIN’S METHOD 43

side converges to ∣∣∣∣1 + ψ′′(0)

∫ 0

−∞
Φ(x) dx+ ψ′′(0)

∫ ∞
0

Φ(−x) dx

∣∣∣∣ = 2

by Proposition C.2.3 for r = 2. Therefore, for each ε > 0, there exists n such that
M2(fn) > 2− ε.

3.3 Applications

3.3.1 Local dependence and U-statistics

In Subsection 2.3.2, we already considered locally dependent random variables. The
concept of local dependence was expressed in terms of dependence neighbourhoods. Here,
we shall take a stronger concept expressed in terms of the dependence graph.

For two vertices i and j of an undirected graph Γ, we shall denote i ∼ j if they are equal
or adjacent, and i 6∼ j otherwise. For a vertex i and a set of vertices J , we shall denote
i ∼J if either i ∈ or there is an edge with one endpoint equal to i and the other in J ,
and i 6∼J otherwise. Finally, for sets of vertices I and J , we shall denote I ∼J if
either I ∩J 6= ∅ or there is an edge with one endpoint in I and the other in J , and
I 6∼J otherwise.

Definition 3.3.1. Let (Xi)i∈I be a family of random variables and let Γ be an undirected
graph with vertex set I . The dependence structure of the family (Xi)i∈I fits Γ if for any
sets J ,K ⊆ I with J 6∼ K , the subfamilies (Xj)j∈J and (Xk)k∈K are independent.
We shall call Γ a dependence graph for the family (Xi)i∈I .

As in Section 3.1, consider a sum W =
∑

i∈I Xi, such that
∑

i∈I E |Xi| < ∞, EXi = 0
for all i ∈ I and var(W ) = 1; in addition, suppose that

∑
i∈I E |Xi|3 < ∞. Next, let Γ

be a dependence graph for the family (Xi)i∈I . Take D < ∞ and suppose that for each
i ∈ I , there are no more than D vertices j with i ∼ j. In other words, the degrees of all
vertices are strictly less than D. We shall show that under these conditions, W can be
reasonably decomposed as in Proposition 3.1.1. To achieve this, first set

Ji := {j ∈ I ; i 6∼ j} , Xij := Xj , Ri :=
∑
j;i∼j

Xj , Wi :=
∑
j;i 6∼j

Xj .

Since the dependence structure of the family (Xi)i∈I fits Γ, Wi is independent of Xi.
Next, set

Rij :=
∑

k;i 6∼k,j∼k

Xk , Wij :=
∑

k;k 6∼{i,j}

Xk

and again observe that Wij is independent of the pair (Xi, Xj). Now we bound the
quantities appearing in (3.1.6) and (3.1.7). First, by the inequality between the arithmetic
and the geometric mean, we have∑

i∈I

∑
j∈Ji

|Xi| |Xij| =
∑

(i,j);i∼j

|Xi| |Xj| ≤
1

2

∑
(i,j);i∼j

(
X2
i +X2

j

)
.
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Since the vertex degrees are bounded from above by D, we have
∣∣{j ; i ∼ j}

∣∣ ≤ D and∣∣{j ; i ∼ j}
∣∣ ≤ D, leading to∑
i∈I

∑
j∈Ji

|Xi| |Xij| ≤ D
∑
i∈I

E(X2
i ) ≤ D

2

∑
i∈I

(
E |Xi|+ E |Xi|3

)
<∞ ,

applying again the inequality between the arithmetic and the geometric mean in the
second inequality. Next, observe that∑

i∈I

∑
j∈Ji

|Xi| |Xij| |Rij| =
∑

(i,j,k)∈T1

|Xi| |Xj| |Xk| ≤
1

3

∑
(i,j,k)∈T1

(
|Xi|3 + |Xj|3 + |Xk|3

)
,

where T1 :=
{

(i, j, k) ; i ∼ j, j ∼ k, i 6∼ k}
}

as illustrated below:

i

j

k

The elements i, j and k must be distinct. Therefore,
∣∣{(j, k) ; (i, j, k) ∈ T1}

∣∣ ≤ (D −
1)(D − 2) for all i,

∣∣{(i, k) ; (i, j, k) ∈ T1}
∣∣ ≤ (D − 1)(D − 2) for all j and

∣∣{(i, j) ;
(i, j, k) ∈ T1}

∣∣ ≤ (D − 1)(D − 2) for all k, leading to∑
i∈I

∑
j∈Ji

E
(
|Xi| |Xij| |Rij|

)
≤ (D − 1)(D − 2)

∑
i∈I

E |Xi|3 .

Next, observe that∑
i∈I

∑
j∈Ji

|Xi| |Xij| |Ri +Rij| =
∑

(i,j,k)∈T2

|Xi| |Xj| |Xk| ≤
1

3

∑
(i,j,k)∈T2

(
|Xi|3 + |Xj|3 + |Xk|3

)
,

where T2 :=
{

(i, j, k) ; i ∼ j, i ∼ {j, k}
}

. Elements (i, j, k) of the set T2 can be divided
into the cases illustrated below, along with upper bounds on the number of pairs (j, k) with
(i, j, k) ∈ T2 for fixed i, which are also upper bounds on the number of pairs (i, j) with
(i, j, k) ∈ T2 for fixed j and upper bounds on the number of pairs (i, j) with (i, j, k) ∈ T2

for fixed k:

i=j=k i=j k i j=k i=k j

i

j

k
i

j

k

1 D − 1 D − 1 D − 1 (D − 1)(D − 2) (D − 1)(D − 2)

Therefore,
∣∣{(j, k) ; (i, j, k) ∈ T2}

∣∣ ≤ 2D2 − 3D + 2 for all i,
∣∣{(i, k) ; (i, j, k) ∈ T2}

∣∣ ≤
2D2 − 3D + 2 for all j and

∣∣{(i, j) ; (i, j, k) ∈ T2}
∣∣ ≤ 2D2 − 3D + 2 for all k, leading to∑

i∈I

∑
j∈Ji

E
(
|Xi| |Xij| |Ri +Rij|

)
≤ (2D2 − 3D + 2)

∑
i∈I

E |Xi|3 .
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Writing E
(
|Xi| |Xij|

)
E |Ri +Rij| = E

(
|Xi| |Xij| |R′i +R′ij|

)
, where the pair (R′i, R

′
ij) is an

independent copy of the pair (Ri, Rij), we can similarly estimate∑
i∈I

∑
j∈Ji

E
(
|Xi| |Xij|

)
E |Ri +Rij| ≤ (2D2 − 3D + 2)

∑
i∈I

E |Xi|3 .

Collecting all together and applying Corollary 3.2.4, we obtain the following result:

Theorem 3.3.2. Let (Xi)i∈I be a family of random variables with dependence structure
which fits a graph Γ. Suppose that for each i ∈ I , there are no more than D <∞ vertices
j with i ∼ j. Assume that

∑
i∈I E |Xi| < ∞,

∑
i∈I E |Xi|3 < ∞ and EXi = 0 for all

i ∈ I . Let W =
∑

i∈I Xi and suppose that var(W ) = 1. Then we have

dW

(
L (W ), N (0, 1)

)
≤ (7D2 − 12D + 8)

∑
i∈I

E |Xi|3 .

Example 3.3.3. If the summands Xi are independent, we can set i ∼ j if and only if
i = j, leading to D = 1 and the bound

dW

(
L (W ), N (0, 1)

)
≤ 3

∑
i∈I

E |Xi|3 ,

which is the same as the bound in Example 3.2.5.

Example 3.3.4. Consider U-statistics : let ξ1, ξ2, . . . be independent and identically
distributed random variables taking values in a measurable space (S,S ). Let F : S×S →
R be a symmetric product measurable function. Suppose that E

∣∣F (ξ1, ξ2)
∣∣3 < ∞ and

EF (ξ1, ξ2) = 0. Consider the sum

Un :=
∑

1≤i<j≤n

F (ξi, ξj) .

Now compute the variance:

σ2
n := var(Un) =

∑
1≤i<j≤n

∑
1≤j<k≤n

cov
(
F (ξi, ξj), F (ξk, ξl)

)
.

Noting that

cov
(
F (ξi, ξj), F (ξk, ξl)

)
=


var
(
F (ξ1, ξ2)

)
; i = j, k = l

cov
(
F (ξ1, ξ2), F (ξ1, ξ3)

)
; |{i, j} ∩ {k, l}| = 1

0 ; otherwise

and letting V1 := var
(
F (ξ1, ξ2)

)
and V2 := cov

(
F (ξ1, ξ2)F (ξ1, ξ3)

)
, we obtain

σ2
n =

n(n− 1)

2
V1 + n(n− 1)(n− 2)V2 .
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Assume that F is not almost everywhere zero (with respect to the joint distribution of
(ξ1, ξ2), so that V1 > 0. The covariance V2 can be decomposed as

V2 = E
[
cov
(
F (ξ1, ξ2), F (ξ1, ξ3)

∣∣ ξ1

)]
+ cov

[
E
(
F (ξ1, ξ2)

∣∣ ξ1

)
, E
(
F (ξ1, ξ3)

∣∣ ξ1

)]
.

Since ξ2 and ξ3 are conditionally independent give ξ1, the first term vanishes. Next,
E
(
F (ξ1, ξ2)

∣∣ ξ1

)
= E

(
F (ξ1, ξ3)

∣∣ ξ1

)
. Therefore,

V2 = var
[
E
(
F (ξ1, ξ2)

∣∣ ξ1

)]
≥ 0 .

Thus, if E
(
F (ξ1, ξ2)

∣∣ ξ1

)
is not almost surely constant (or equivalently not almost surely

zero), we have V2 > 0. In this case, the U -statistic is called non-degenerate.

The dependence structure of the family
(
F (ξi, ξj)

)
1≤i<j≤n fits the graph on the vertex set

{(i, j) ; 1 ≤ i < j ≤ n}, where vertices (i, j) and (k, l) are adjacent if {i, j} ∩ {k, l} 6= ∅:
taking families (iα, jα)α∈A and (kβ, lβ)β∈B, such that {iα, jα} ∩ {kβ, lβ} = ∅ for all α and
β, the sets {iα, jα ; α ∈ A} and {kβ, lβ ; β ∈ B} must be disjoint. Consequently, we may
take D = 2n− 3.

Rescaling and applying Theorem 3.3.2, we obtain

dW

(
L

(
Un
σn

)
, N (0, 1)

)
≤ n(n− 1)(28n2 − 48n+ 59)

2
(
n(n−1)

2
V1 + n(n− 1)(n− 2)V2

)3/2
E
∣∣F (ξ1, ξ2)

∣∣3 .
Notice that if the statistic is non-degenerate, then the rate of convergence is again 1/

√
n,

like for independent random variables (see Example 3.2.5).

If the statistic is degenerate, the distributions may not converge to the standard normal.
A typical example is if F is of the form F (x, y) = G(x)G(y). In this case, we have

Un =
1

2

( n∑
i=1

G(ξi)

)2

− 1

2

n∑
i=1

(
G(ξi)

)2
. (3.3.1)

Observe that E
[
F (ξ1, ξ2)

]
=
(
E
[
G(ξ1)

])2
= 0, so that E

[
G(ξ1)

]
= 0 by our assumption.

Letting τ 2
1 := var

[
G(ξ1)

]
, we find that the first term in the right hand side of (3.3.1)

has expectation nτ 2
1 and variance of order n2, while the second term has expectation nτ 2

1

and variance of order n. By the central limit theorem, the distribution of the first term
divided by n approaches the chi squared distribution with one degree of freedom, scaled by
a constant factor. Therefore, the distributions of Un/

√
n converge to the centred version

of that distribution.

3.3.2 Random permutations

Let A = [a(i, j)]i,j be a n× n matrix of real numbers. Consider the statistic

W =
n∑
i=1

a
(
i,Π(i)

)
=

n∑
i=1

n∑
j=1

a(i, j) 1
(
Π(i) = j

)
,
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where Π is a uniformly distributed random permutation of {1, 2, . . . , n}. Observe that W
changes just for a constant if we add a constant value to all entries of a particular row
or column. Subtracting the averages, we can make all rows to have sum zero. Doing the
same with the columns, observe that the row sums still remain zero. Therefore, we can
assume without for generality that

n∑
j=1

a(i, j) = 0 for all i and
n∑
i=1

a(i, j) = 0 for all j. (3.3.2)

In this case, of course, EW = 0. Now compute

var(W ) = E(W 2) =
∑

1≤i,j≤n

∑
1≤i′,j′≤n

a(i, j) a(k, l)P
(
Π(i) = j, Π(k) = l

)
.

Noting that

P
(
Π(i) = j, Π(k) = l

)
=


1
n

; i = k, j = l
1

n(n−1)
; i 6= k, j 6= l ,

0 ; otherwise ,

we further compute

var(W ) =
1

n

∑
1≤i,j≤n

a(i, j)2 +
1

n(n− 1)

∑
1≤i,j≤n

∑
1≤k,l≤n;k 6=i,l 6=j

a(i, j) a(k, l)

=
1

n

∑
1≤i,j≤n

a(i, j)2 +
1

n(n− 1)

∑
1≤i,j≤n

∑
1≤k,l≤n

a(i, j) a(k, l)

− 1

n(n− 1)

∑
1≤i,j≤n

∑
1≤l≤n

a(i, j) a(i, l)

− 1

n(n− 1)

∑
1≤i,j≤n

∑
1≤k≤n

a(i, j) a(k, j)

+
1

n(n− 1)

∑
1≤i,j≤n

a(i, j)2

=
1

n− 1

∑
1≤i,j≤n

a(i, j)2 .

In the sequel, we shall assume (3.3.2) and var(W ) = 1.

To construct decompositions from Proposition 3.1.1, we introduce the concept of simple
random relocation.

Definition 3.3.5. Let A ⊆ M be finite sets. A simple random relocation of the set A
within the set M is a random permutation TA of the set M , which acts as follows:

• The elements of the set A are mapped to any elements of M uniformly at random.

• Given the latter and denoting by B the image of A under TA, all elements of B \A
are mapped to the elements of A \B uniformly at random.
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• The other elements are left unchanged.

Proposition 3.3.6. Let A ⊆ M be finite sets and let TA be a simple random relocation
of A within M . Take a uniformly distributed random permutation Π of M , independent
of TA. Then Π ◦ T−1

A is also uniformly distributed and is independent of the restriction of
Π to A.

Proof. Let A = {i1, . . . , ir}. What we need to prove is that given Π(i1) = j1, . . . ,Π(ir) =
jr, Π ◦ T−1

A is uniformly distributed. Suppose that TA(i1) = k1, . . . , TA(ir) = kr, and
observe that the map σ 7→ σ ◦ T−1

A is a one-to-one correspondence between the set of
permutations σ with σ(i1) = j1, . . . , σ(ir) = jr and the set of permutations σ with σ(k1) =
j1, . . . , σ(kr) = jr. Therefore, given TA(i1) = k1, . . . , TA(ir) = kr,Π(i1) = j1, . . . ,Π(ir) =
jr, the random permutation σ ◦ T−1

A is uniformly distributed over all permutations σ
with σ(k1) = j1, . . . , σ(jr) = jr. Noting that the r-tuple

(
TA(i1), . . . , TA(ir)

)
is uniformly

distributed over all possible elements of M r with distinct elements, the proof is complete.

Now set
Ii := {1, 2, . . . , n} , Xi := a

(
i,Π(i)

)
,

noting that EXi = 0 for all i. Next, take a family of simple random relocations TA,
A ⊆ {1, 2, . . . , n} of sets A within {1, 2, . . . , n}, which are all independent of Π. By
Proposition 3.3.6, the random variable

Wi :=
N∑
j=1

a
(
j,Π(T−1

{i} (j))
)

=
N∑
j=1

a
(
T{i}(j),Π(j)

)
, (3.3.3)

is independent of Xi for each i, so that we can set

Ii := {1, 2, . . . , n} , Xij := a
(
j,Π(j)

)
− a
(
T{i}(j),Π(j)

)
, Ri :=

∑
j∈Ii

Xij ,

noting that Ri = W −Wi.

The pair (Xi, Xij) is uniquely determined by T{i} and the restriction of Π to {i, j}. Thus,
take another family of simple random relocations T ′A, A ⊆ {1, 2, . . . , n}, which is inde-
pendent of all other random variables. Similarly as before, put

Wij :=
N∑
k=1

a
(
k,Π(T ′ −1

{i,j}(k))
)

=
N∑
j=1

a
(
T ′{i,j}(k),Π(k)

)
(3.3.4)

and by Proposition 3.3.6, Wij is independent of the pair (Xi, Xij).

To apply Corollary 3.2.4, we need to bound the sums

n∑
i=1

n∑
j=1

E
[
|Xi| |Xij| |Ri +Rij|

]
,

n∑
i=1

n∑
j=1

E
[
|Xi| |Xij| |Rij|

]
,

n∑
i=1

n∑
j=1

E
[
|Xi| |Xij|

]
E |Ri +Rij| .

(3.3.5)
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As TA preserves all points outside A ∪ TA(A) = A ∪ T−1
A (A) (and similarly T ′A), we have

|Xij| ≤ 1
[
j ∈

{
i, T−1
{i} (i)

}](∣∣a(j,Π(j)
)∣∣+

∣∣a(T{i}(j),Π(j)
)∣∣) ,

|Ri +Rij| ≤
n∑
k=1

1
[
k ∈

{
i, j, T ′ −1

{i,j}(i), T
′ −1
{i,j}(j)

}](∣∣a(k,Π(k)
)∣∣+

∣∣a(T ′{i,j}(k),Π(k)
)∣∣) ,

|Rij| ≤
n∑
k=1

1
[
k ∈

{
i, j, T−1

{i} (i), T
′ −1
{i,j}(i), T

′ −1
{i,j}(j)

}]
×
(∣∣a(T{i}(k),Π(k)

)∣∣+
∣∣a(T ′{i,j}(k),Π(k)

)∣∣) .
(3.3.6)

The resulting bounds on the sums in (3.3.5) can be expressed in terms of auxiliary random
indices and permutations: let I be uniformly distributed over {1, 2, . . . , n} and indepen-
dent of all other random elements. Letting

J1 := I , J2 := T−1
{I}(I) ;

Jr1 := Jr , Jr2 := T{I}(Jr) ;

Kr1 := I , Kr2 := Jr , Kr3 := T ′ −1
{I,Jr}(I) , Kr4 := T ′ −1

{I,Jr}(Jr) ;

Krs1 := Krs , Jrs2 := T{I,Jr}(Krs) ,

we find that

n∑
i=1

n∑
j=1

E
[
|Xi| |Xij| |Ri +Rij|

]
≤ nE

[∣∣a(I,Π(I)
)∣∣ 2∑

r=1

2∑
u=1

∣∣a(Jru,Π(Jr)
)∣∣ 4∑

s=1

2∑
v=1

∣∣a(Krsv,Π(Krs)
)∣∣] .

Applying the inequality between the arithmetic and the geometric mean, we obtain

n∑
i=1

n∑
j=1

E
[
|Xi| |Xij| |Ri +Rij|

]
≤ n

3

2∑
r=1

2∑
u=1

4∑
s=1

2∑
v=1

[
E
∣∣a(I,Π(I)

)∣∣3 + E
∣∣a(Jru,Π(Jr)

)∣∣3 + E
∣∣a(Krsv,Π(Krs)

)∣∣3] .
Using independence, we find that each random index L being equal to I, Jru or Krsv

is uniformly distributed over {1, 2, . . . , n}. Moreover, since Π is independent of all these
random indices, Π(L) is independent of L and also uniformly distributed over {1, 2, . . . , n}.
This leads to the bound

n∑
i=1

n∑
j=1

E
[
|Xi| |Xij| |Ri +Rij|

]
≤ 32

n

n∑
i=1

n∑
j=1

|a(i, j)|3 .
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Similarly, introducing Kr5 := T ′ −1
{I} (I), we estimate

n∑
i=1

n∑
j=1

E
[
|Xi| |Xij| |Rij|

]
≤ nE

[∣∣a(I,Π(I)
)∣∣ 2∑

r=1

2∑
u=1

∣∣a(Jru,Π(Jr)
)∣∣ 5∑

s=1

2∑
v=1

∣∣a(Krsv,Π(Krs)
)∣∣]

≤ 40

n

n∑
i=1

n∑
j=1

|a(i, j)|3 .

Finally, to estimate the last sum in (3.3.5), we introduce another random permutation Π′,
which is uniformly distributed and independent of all other random variables. Similarly
as before, we obtain

n∑
i=1

n∑
j=1

E
[
|Xi| |Xij|

]
E |Ri +Rij|

≤ nE
[∣∣a(I,Π(I)

)∣∣ 2∑
r=1

2∑
u=1

∣∣a(Jru,Π(Jr)
)∣∣ 4∑

s=1

2∑
v=1

∣∣a(Krsv,Π
′(Krs)

)∣∣]
≤ 32

n

n∑
i=1

n∑
j=1

|a(i, j)|3 .

Collecting all together and applying Corollary 3.2.4, we obtain the following result:

Proposition 3.3.7. Let a(i, j), 1 ≤ i, j ≤ n, be real numbers, such that

n∑
j=1

a(i, j) = 0 for all i and
n∑
i=1

a(i, j) = 0 for all j.

Take a uniformly distributed random permutation Π of the set {1, 2, . . . , n} and let

W :=
n∑
i=1

a
(
i,Π(i)

)
.

If var(W ) = 1, then we have

dW

(
L (W ), N (0, 1)

)
≤ 136

n

n∑
i=1

n∑
j=1

|a(i, j)|3 .

Remark 3.3.8. More careful computations along with a more sophisticated version of
Corollary 3.2.4 would yield a better constant. Moreover, as mentioned in Example 2.4.4,
it is plausible that a sum of m independent random variables can be obtained as a limit
of statistics W defined as above, where a(i, j) = 0 for i > m, m is fixed and n tends to
infinity. It is possible to derive a bound in the normal approximation which approaches
the bound for sums of independent random variables as stated in Example 3.3.3.
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3.4 The Berry–Esseen theorem

The celebrated Berry–Esseen theorem bounds the error in the central limit theorem for
independent and identically distributed random variables in terms of the Kolmogorov
distance:

dK(µ, ν) :=
∑
a∈R

∣∣∣µ((−∞, a]
)
− ν
(
(−∞, a]

)∣∣∣ .
Theorem 3.4.1 (Berry [7], Esseen [16]). Let ξ1, ξ2, . . . be independent and identically
distributed random variables with E ξ1 = 0, var(ξ1) = 1 and E |ξ1|3 <∞. Letting

W (n) :=
ξ1 + ξ2 + · · ·+ ξn√

n
,

we have

dK

(
L
(
W (n)

)
, N (0, 1)

)
≤ C E |ξ1|3√

n
,

where C is a universal constant.

Remark 3.4.2. The calculation of the constant C has a long history. In 1941, Berry [7]
claimed that the result holds with C = 1.88, but his calculations turned out not to be
entirely correct (see Hsu [21]). In 1945, Esseen [16] proved the result with C = 7.59. Over
the next decades, the constant was significantly improved. The best value obtained so
far seem to be C = 0.4748, obtained in 2011 by Shevtsova [28] (the same author even
claims C = 0.469 in her paper [29], but provides no proof). Shevtsova’s bound is not

far from optimal: a lower bound
√

10+3
6
√

2π
> 0.4097 on the constant C was derived in 1956

by Esseen [17]. For more details on the history of calculation of C, see Korolev and
Shevtsova [22].

Remark 3.4.3. Example 3.3.3 provides a bound in the Wasserstein distance:

dW

(
L
(
W (n)

)
, N (0, 1)

)
≤ 3E |ξ1|3√

n
,

which, combined with (A.2.7), gives

dW

(
L
(
W (n)

)
, N (0, 1)

)
≤
√

6
4
√

2π

√
E |ξ1|3
4
√
n

.

However, the latter bound does not preserve the rate of convergence.

Here, we prove Theorem 3.4.1 by Stein’s method. Unfortunately, the constant will be
far from optimal. However, the main advantage of Stein’s method is that it can be
readily applied to sums of dependent random variables, where most other methods do
not seem work. In particular, most of the improvements of the constant in the Berry–
Esseen theorem (including the improvement by Shevtsova [28]) are proved by the method
of characteristic functions. For sums of independent random variables, characteristic
functions satisfy the multiplication formula, which has no straightforward extension to,
let’s say, local dependence.
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Thus, the proof of the Berry–Esseen theorem can serve as a guideline how to extend the
result to sums of dependent random variables. Here, we shall not do the latter. In fact,
bounds of correct order in terms of the Kolmogorov metric are much harder to obtain
than for the Wasserstein metric. In particular, it seems to be very difficult to derive a
result being as general as Corollary 3.2.4. Instead, more special results have been derived.
Bolthausen [8] proves a Berry–Esseen type result for random permutations. Chen and
Shao [12] prove a result for local dependence, but that result does not yield the counterpart
of Theorem 3.3.2 for local dependence. One can do more under the assumption of higher
moments: see Chen, Goldstein and Röllin [10] and references therein. The assumption of
boundedness admits even more general and cleaner results: see Dembo and Rinott [15],
Goldstein [19] and Raič [26].

In order to derive the Berry–Esseen theorem by Stein’s method, it is beneficial to consider
functions with bounded total variation in view of Section A.3.

Theorem 3.4.4. Consider a function h : R→ R.

(1) If h has bounded variation, then the function f defined by (3.2.4) is an almost-
everywhere solution to the Stein equation (3.2.1), which satisfies V (f ′) ≤ 2V (h).

(2) If h is absolutely continuous and h′ has bounded variation, the function f defined by
(3.2.4) is a classical solution to the Stein equation (3.2.1). Moreover, f ′ is absolutely
continuous and V (f ′′) ≤ 2V (h′).

Proof.

Part (1). First recall that h is bounded by Remark B.2.2 and measurable by Corol-
lary B.2.5. Therefore, N|h| <∞. By Proposition 3.2.1, there exists an almost-everywhere
solution f to the Stein equation, which means that f is absolutely continuous. Recalling
(3.2.6), there is an almost-everywhere derivative of f given by

f ′(w) = h(w)− ψ′(−w)

∫ w

−∞
h(x)φ(x) dx− ψ′(w)

∫ ∞
w

h(x)φ(x) dx . (3.4.1)

We shall derive a formula similar to (3.2.7), which was derived from (3.2.6) by inte-
gration by parts, integrating φ and differentiating h. This can be done of h is abso-
lutely continuous, which is not an assumption in our case. However, we can use the
(improper) Riemann–Stieltjes integral. By assumption, h has bounded variation. Letting
Φ−(y) := Φ(−y), Φ and Φ− are absolutely continuous. By Proposition B.3.8, we can then
rewrite (3.4.1) as

f ′(w) = h(w)− ψ′(−w)

∫ w

−∞
h(x) dΦ(x) + ψ′(w)

∫ ∞
w

h(x) dΦ−(x) .

By the integration by parts formula (Proposition B.3.6) and noting that
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limw→−∞ h(w) Φ(w) = limw→∞ h(w) Φ(−w) = 0, we have

f ′(w) = h(w)− ψ′(−w)h(w) Φ(w) + ψ′(−w)

∫ w

−∞
Φ(y) dh(y)

− ψ′(w)h(w) Φ(−w)− ψ′(w)

∫ ∞
w

Φ(−y) dh(y)

= ψ′(−w)

∫ w

−∞
Φ(y) dh(y)− ψ′(w)

∫ ∞
w

Φ(−y) dh(y) ,

where the last equality is due to Proposition C.2.3 for r = 1.

Let Λh be the signed measure associated to h in view of Definition B.4.9. By part (2) of
Proposition B.4.11, we have

∫ w
a

Φ(y) dh(y) =
∫

(a,w]
Φ dΛh and∫ b

w
Φ(−y) dh(y) =

∫
(w,b]

Φ− dΛh for all a ≤ w ≤ b. Since Φ is bounded on (−∞, w] and

Φ− is bounded on (w,∞), we may take the limit in a and b, leading to
∫ w
−∞Φ(y) dh(y) =∫

(−∞,w]
Φ dΛh and

∫ b
w

Φ(−y) dh(y) =
∫

(w,∞)
Φ− dΛh. We may rewrite this as

f ′(w) =

∫ ∞
−∞

F (w, y) Λh(dy) ,

where

F (w, y) =

{
−ψ′(w) Φ(−y) ; w < y
ψ′(−w) Φ(y) ; w ≥ y .

Letting Fy(w) := F (w, y), it is left to the reader as an exercise to show that
∑n

k=1

∣∣Fy(wk)−
Fy(wk−1)

∣∣ ≤ 2
(
ψ′(y) Φ(−y) + ψ′(−y) Φ(y)

)
for every sequence w0 ≤ w1 ≤ · · · ≤ wn

(use Proposition C.1.5). Therefore, V (Fy) ≤ 2
(
ψ′(y) Φ(−y) + ψ′(−y) Φ(y)

)
. More-

over, by Proposition C.1.6, we have limt→∞
[∣∣Fy(−t) − Fy

(
w − 1

t

)∣∣ +
∣∣Fy(w − 1

t

)∣∣ −
Ft(y)

∣∣ +
∣∣Fy(y) − Fy(t)

∣∣] = 2
(
ψ′(y) Φ(−y) + ψ′(−y) Φ(y)

)
. By Proposition C.2.3, we

have ψ′(y) Φ(−y) + ψ′(−y) Φ(y) = 1, so that V (Fy) = 2 for all y. Finally, applying
part (2) of Proposition B.2.7 along with part (1) of Proposition B.4.11, we estimate
V (f ′) ≤

∫∞
−∞ V (Fy) |Λh|(dy) = 2‖Λh‖ = 2V (h), proving part (1).

Part (2). We proceed similarly as in part (1). First recall that h′ is bounded by Re-
mark B.2.2. Therefore, h is of linear growth and N|h| <∞. By Proposition 3.2.1, there
exists a classical solution f to the Stein equation, such that f ′ is absolutely continuous
and, recalling (3.2.8),

f ′′(w) = h′(w)− ψ′′(−w)

∫ w

−∞
h′(y) Φ(y) dy − ψ′′(w)

∫ ∞
w

h′(y) Φ(−y) dy . (3.4.2)

Again, we rewrite this formula in terms of the Riemann–Stieltjes integral. By assumtion,
h′ has finite total variation. The functions Φ2(y) :=

∫ y
−∞Φ(t) dt Φ−2 (y) := Φ2(−y) are

absolutely continuous. By Proposition B.3.8, we have

f ′′(w) = h′(w)− ψ′′(−w)

∫ w

−∞
h′(y) dΦ2(y) + ψ′′(w)

∫ ∞
w

h′(y) dΦ−2 (y) .
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By the integration by parts formula (Proposition B.3.6) and noting that
limw→−∞ h

′(w) Φ2(w) = limw→∞ h
′(w) Φ2(−w) = 0 by Corollary C.2.2, we have

f ′′(w) = h′(w)− ψ′′(−w)h′(w) Φ2(w) + ψ′′(−w)

∫ w

−∞
Φ2(y) dh′(y)

− ψ′′(w)h′(w) Φ2(−w)− ψ′′(w)

∫ ∞
w

Φ2(−y) dh′(y)

= ψ′′(−w)

∫ w

−∞
Φ2(y) dh′(y)− ψ′′(w)

∫ ∞
w

Φ2(−y) dh′(y) ,

where the last equality is due to Proposition C.2.3 for r = 2. Similarly as in the proof of
part (1), we can rewrite this as

f ′′(w) =

∫ ∞
−∞

G(w, y) Λh′(dy) ,

where

G(w, y) =

{
−ψ′′(w) Φ2(−y) ; w < y
ψ′′(−w) Φ2(y) ; w ≥ y .

Letting Gy(w) := G(w, y), we again find that V (Gy) = 2
(
ψ′′(y) Φ2(−y)+ψ′′(−y) Φ2(y)

)
=

2, with the last equality due to Proposition C.2.3 for r = 2. Finally, applying part (2)
of Proposition B.2.7 along with part (1) of Proposition B.4.11, we estimate V (f ′′) ≤∫∞
−∞ V (Fy) |Λh′|(dy) = 2‖Λh′‖ = 2V (h′), completing the proof.

Proof of Theorem 3.4.1. Sums of independent random variables are clearly a very
special case of decompositions of Barbour, Karoński and Ruciński introduced in Sec-
tion 3.1. Letting

I := {1, 2, . . . , n} , Ji := {0} ,

X
(n)
i := R

(n)
i := X

(n)
i0 :=

ξi√
n
, W

(0)
i := W

(n)
i0 := W (n) −X(n)

i , R
(n)
i0 := 0 ,

all conditions specified in Section 3.1 are fulfilled and (3.1.5) reduces to

E
[
f ′(W )− f(W )W

]
=

n∑
i=1

E
[
f ′′
(
W

(n)
i + θ2X

(n)
i

)
X

(n)
i E

((
X

(n)
i

)2)
− θ1 f

′′(W (n)
i + θ1θ2X

(n)
i

)(
X

(n)
i

)3
]
,

(3.4.3)

where θ1 and θ2 are uniformly distributed over [0, 1] and independent of each other as

well as of X
(n)
1 , . . . , X

(n)
n . This is true for all functions f with M2(f) < ∞ (see Proposi-

tion 3.1.1).

Denoting the indicators of half-lines by

ha(w) :=

{
1 ; w ≤ a

0 ; x > a ,
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the error in the normal approximation in the Kolmogorov metric is expressed as

dK

(
L
(
W (n)

)
, N (0, 1)

)
= sup

a∈R

∣∣∣E[ha(W (n)
)]
−Nha

∣∣∣ .
Unfortunately, the derivative of the solution of the Stein equation (3.2.1) with ha in
place of h is not absolutely continuous (exercise). Therefore, similarly as in the proof
of Propositions A.2.9 and A.4.11, we approximate the step functions ha by the slope
functions

ha,b(x) :=


1 ; x ≤ a

b− x
b− a

; a ≤ x ≤ b

0 ; x ≥ b ,

defined for a < b. Observe that

Nha,b −Nha =

∫ b

a

b− x
b− a

φ(x) dx ≤ 1√
2π

∫ b

a

b− x
b− a

dx =
b− a
2
√

2π
,

Nhb −Nha,b =

∫ b

a

x− a
b− a

φ(x) dx ≤ 1√
2π

∫ b

a

x− a
b− a

dx =
b− a
2
√

2π
.

Therefore, for any a ∈ R and ε > 0,

E
[
ha
(
W (n)

)]
−Nha ≤ E

[
ha,a+ε

(
W (n)

)]
−Nha,a+ε +

ε

2
√

2π
,

Nha − E
[
ha
(
W (n)

)]
≤ Nha−ε,a − E

[
ha−ε,a

(
W (n)

)]
+

ε

2
√

2π

and consequently

dK

(
L
(
W (n)

)
, N (0, 1)

)
≤ sup

a∈R

∣∣∣E[ha,a+ε

(
W (n)

)]
−Nha,a+ε

∣∣∣+
ε

2
√

2π
. (3.4.4)

Let fa,b be the solution to the Stein equation (3.2.1) defined by (3.2.4) with fa,b in lace of
f and ha,b in place of h. Since M1(ha,b) < ∞, we have M1(fa,b) < ∞ by Theorem 3.2.3,
so that (3.4.3) applies with fa,b in place of f . Therefore,

E
[
ha,a+ε

(
W (n)

)]
−Nha,a+ε =

n∑
i=1

E
[
f ′′a,a+ε

(
W

(n)
i + θ2X

(n)
i

)
X

(n)
i E

((
X

(n)
i

)2)
− θ1 f

′′
a,a+ε

(
W

(n)
i + θ1θ2X

(n)
i

)(
X

(n)
i

)3
]
.

(3.4.5)

Now fix x ∈ R and consider the expectation

E
[
f ′′a,a+ε

(
W

(n)
i + x

)]
= E

[
f ′′a,a+ε

(√
n− 1

n
W (n−1) + x

)]
. (3.4.6)

Denoting by N (µ, σ2) the normal distribution with mean µ and variance σ2, write〈
f ′′a,a+ε , N

(
x,
n− 1

n

)〉
=

√
n

n− 1

∫ ∞
−∞

f ′′a,a+ε(w)φ

(
(w − x)

√
n

n− 1

)
dw .
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However, since
∫∞
−∞ f

′′
a,a+ε(w) dw = limw→∞ f

′
a,a+ε(w) − limw→∞ f

′
a,a+ε(w) = 0, we also

have〈
f ′′a,a+ε , N

(
x,
n− 1

n

)〉
=

√
n

n− 1

∫ ∞
−∞

f ′′a,a+ε(w)

[
φ

(
(w − x)

√
n

n− 1

)
− 1

2
√

2π

]
dw .

Applying by Proposition B.2.6 and part (1) of Theorem 3.4.4, we estimate∣∣∣∣〈f ′′a,a+ε , N
(
x,
n− 1

n

)〉∣∣∣∣ ≤ 1

2
√

2π

√
n

n− 1

∫ ∞
−∞
|f ′′a,a+ε(w)| dw

=
1

2
√

2π

√
n

n− 1
V (f ′a,a+ε)

≤ 1√
2π

√
n

n− 1
V (ha,a+ε)

=

√
n√

2π(n− 1)
.

(3.4.7)

Next, observe that, by Corollary A.3.3 and part (2) of Theorem 3.4.4,∣∣∣∣∣E
[
f ′′a,a+ε

(√
n− 1

n
W (n−1) + x

)]
−
〈
f ′′a,a+ε , N

(
x,
n− 1

n

)〉∣∣∣∣∣
≤ V (f ′′a,a+ε) dK

(
L

(√
n− 1

n
W (n−1) + x

)
, N

(
x,
n− 1

n

))
= V (f ′′a,a+ε) dK

(
L
(
W (n−1)

)
, N (0, 1)

)
≤ 2V (h′a,a+ε) dK

(
L
(
W (n−1)

)
, N (0, 1)

)
=

4

ε
dK

(
L
(
W (n−1)

)
, N (0, 1)

)
.

(3.4.8)

Combining (3.4.6), (3.4.7) and (3.4.8), we obtain∣∣∣E[f ′′a,a+ε

(
W

(n)
i + x

)]∣∣∣ ≤ √
n√

2π(n− 1)
+

4δn−1

ε
,

where
δn := dK

(
L
(
W (n)

)
, N (0, 1)

)
.

We also have ∣∣∣E[f ′′a,a+ε

(
W

(n)
i + θ2X

(n)
i

) ∣∣∣ X(n)
i , θ1, θ2

]∣∣∣ ≤ 2

√
n

n− 1
+

4δn−1

ε
,∣∣∣E[f ′′a,a+ε

(
W

(n)
i + θ1θ2X

(n)
i

) ∣∣∣ X(n)
i , θ1, θ2

]∣∣∣ ≤ 2

√
n

n− 1
+

4δn−1

ε
.
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Plugging into (3.4.5), we obtain∣∣∣E[ha,a+ε

(
W (n)

)]
−Nha,a+ε

∣∣∣
≤

( √
n√

2π(n− 1)
+

4δn−1

ε

)
n∑
i=1

(
E
∣∣X(n)

i

∣∣E(X(n)
i

)2
+ E

(
θ1

∣∣X(n)
i

∣∣3)] .
By Jensen’s inequality, we have E

∣∣X(n)
i

∣∣ ≤ (E∣∣X(n)
i

∣∣3)1/3

and E
(
X

(n)
i

)2 ≤
(
E
∣∣X(n)

i

∣∣3)2/3

,

leading to

∣∣∣E[ha,a+ε

(
W (n)

)]
−Nha,a+ε

∣∣∣ ≤ (3

2

√
n√

2π(n− 1)
+

6δn−1

ε

)
nE
∣∣X(n)

1

∣∣3
=

(
3
√
n√

8π(n− 1)
+

6δn−1

ε

)
E |ξ1|3√

n
.

Combining with (3.4.4), we obtain

δn ≤

(
3
√
n√

8π(n− 1)
+

6δn−1

ε

)
E |ξ1|3√

n
+

ε

2
√

2π
.

It is easy to check that infε>0

(
a
ε

+ bε
)

= 2
√
ab for all a, b ≥ 0. Therefore,

δn ≤
3E |ξ1|3√
8π(n− 1)

+

√
12E |ξ1|3√

2π

δn−1√
n
.

Letting Cn := δn
√
n/E |ξ1|3, we rewrite this as

Cn ≤
3
√
n√

8π(n− 1)
+

√
12√
2π

√
n

n− 1
Cn−1 .

Trivially, δn ≤ 1 for all n. Next, by Jensen’s inequality, we have E |ξ1|3 ≥
(
E ξ2

1

)3/2
= 1.

Therefore, Cn ≤
√
n for all n. However, our goal is to bound Cn uniformly in n. Numerical

calculations show that

√
n <

3
√
n√

8π(n− 1)
+

√
12√
2π

√
n

n− 1

√
n− 1

for all n ≤ 35. Therefore, in this case, we can merely say that Cn ≤
√
n. Letting

C∗35 :=
√

35 , C∗n :=
3
√
n√

8π(n− 1)
+

√
12√
2π

√
n

n− 1
C∗n−1 ,

numerical calculations show
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n C∗n
35 5.916080

36 5.966365

37 5.987821

38 5.996282

39 5.998944

40 5.999055

41 5.998073

Clearly, Cn ≤ C∗35 for all n ≤ 35 and Cn ≤ C∗n for all n ≥ 35. We have C∗35 < C∗36 < C∗37 <
C∗38 < C∗39 < C∗40, so that Cn ≤ C∗40 for all n ≤ 40. Now prove by induction that this
remains true for n ≥ 40. Indeed, for n ≥ 41, observe that

Cn ≤
3
√
n√

8π(n− 1)
+

√
12√
2π

√
n

n− 1
Cn−1

≤ 3
√

41√
320π

+

√
12√
2π

√
41

40
C∗40

< 5.998074 < C∗40 .

Thus, we have proved the result for C = C∗40 < 6.

Remark 3.4.5. For large n, we can do slightly better: one can show that
lim supn→∞Cn ≤ C∗, where C∗ is the unique solution to the equation

C∗ =
3√
8π

+

√
12√
2π

C∗ .

The solution can be computed explicitly as C∗ = 15+
√

216√
2π

< 5.923683. Thus, the improve-

ment is still very small comparable to the result of Shevtsova [28], which gives C = 0.4748.

As regards Stein’s method, Chen and Shao [11] succeed to derive the Berry–Esseen in-
equality with C = 4.1 (however, their constant also applies for sums of non-identically
distributed random variables). Even this constant is far away from 0.4748. As already
mentioned, the advantage of Stein’s method is possibility of extension to dependent sum-
mands, but we shall not tackle this issue here.



Appendix A

Convergence of probability measures

Note. This appendix requires a basic knowledge of the theory of metric spaces and
topology. For basic definitions related to the latter as well for a slightly deeper insight,
the reader is referred to [24] or [30].

We are often interested whether a sequence of probability distributions (µn)n∈N on a
measurable space (S,S ) converges to a given probability measure µ. In order to make
this precise, we have to endow the space Pr(S,S ), the set of all probability measures
on (S,S ), with a topology. The latter will be based on test functions : the probability
measures µ and ν are “close” if the integrals 〈f , µ〉 and 〈f , ν〉 are close for a suitable
class of measurable functions f , where we recall from (1.1.1):

〈f , µ〉 :=

∫
f dµ . (A.0.1)

Remark A.0.6. If the test functions are unbounded, they cannot test all probability
probability measures. In this case, Pr(S,S ) should be replaced by a suitable subspace.

Throughout this appendix, (S,S ) will denote a measurable space, while M will denote
a subspace of Pr(S,S ).

A.1 Metrics based on test functions

One of the ways to construct a topology on M from a class of test functions F is to
define the following metric:

dF (µ, ν) = sup
f∈F

∣∣〈f , ν〉 − 〈f , µ〉∣∣ . (A.1.1)

Of course, we must check whether the right hand side is well defined and whether it
represents a metric. Firstly, 〈|f | , µ〉 must be finite for all µ ∈M and f ∈ F . However,
this does not imply that d(µ, ν) < ∞. Suppose that the latter is true. In this case, the
symmetry is obvious and the triangle inequality is easy to check, too. It remains to check

59
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that d(µ, ν) = 0 implies µ = ν. This is obviously true if the class F is rich enough. The
proof of the following assertion is easy and is therefore left to the reader:

Proposition A.1.1. Let dF be as in (A.1.1) and let d(µ, ν) <∞ for any µ and ν. Then
dF is a metric if and only if the test functions from F separate the probability measures
from M , that is, when for any two probability measures µ 6= ν ∈ M , there exists a
function f ∈ F , such that 〈f , µ〉 6= 〈f , ν〉.

Example A.1.2. Letting F be the class of indicators of all measurable sets, we obtain the
total variation metric, which will be denoted by dTV. Thus, for example, Proposition 2.2.2
can be rewritten as

dTV

(
L (W ), Po(λ)

)
≤ 1− e−λ

λ

∑
i∈I

p2
i .

where L (W ) denotes the distribution (law) of W , that is, L (W )(A) = P(W ∈ A).
Clearly, we can take M = Pr(S,S ) and the class of indicators of all measurable sets
separates all probability measures by definition, so that dTV is a metric.

Remark A.1.3. The total variation metric typically works well in discrete spaces. Oth-
erwise, it is usually too strong. As an example, consider a sequence x1, x2, . . . of points
in a metric space, which converges to x. If all the points xn are different from x, then
dTV(δxn , δx) = 1 for all n, so that the sequence of Dirac measures δx1 , δx2 , . . . does not
converge to δx.

Example A.1.4. Letting F be the class of indicators of all half-lines (−∞, a] on the real
line endowed with the Borel σ-algebra B(R), we obtain the Kolmogorov metric, which will
be denoted by dK. Again, we can take M = Pr

(
R,B(R)

)
. We claim that F separates

all probability measures. To show this, take Borel probability measures µ and ν which
agree on F , that is, on all all half-lines (−∞, a]. The family of all half-lines is closed
under intersections and generates the Borel σ-algebra. By Theorem A.1.6 below, µ and
ν agree on all Borel sets, so that µ = ν. Therefore, F separates all probability measures,
so that dK is also a metric. Clearly, dK ≤ dTV, so that dK is weaker than dTV.

Definition A.1.5. A π-system is a collection of sets which is closed under finite inters-
estions.

The following result is a consequence of Dynkin’s π–λ theorem (see, for example, Corol-
lary 1.6.3 of Cohn [13]).

Theorem A.1.6. If two probability measures agree on a π-system which generates a
σ-algebra S , then they agree on S .

The fact that the set of all half-lines (−∞, a] separates probability measures can be
generalized in the following way:

Proposition A.1.7. Let F be a class of measurable functions on (S,S ) and let P be
a π-system which generates S . For each A ∈ P, suppose that there exists a uniformly
bounded sequence of functions fn ∈ span F which converges pointwise to the indicator 1A
of a set A. Then F separates all probability measures from Pr(S,S ).
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Proof. Let µ, ν ∈ Pr(S,S ) be such that 〈f , µ〉 = 〈f , ν〉 for all f ∈ F . Thanks to
linearity, this is also true for all f ∈ span F . From the dominated convergence theorem,
it immediately follows that µ(A) = ν(A) for all A ∈P. By Theorem A.1.6, µ(A) = ν(A)
for all A ∈ S , so that µ = ν.

Remark A.1.8. Again, if x1, x2, . . . is a sequence of real numbers converging to x and
all numbers xn are different from x, we still have dK(δxn , δx) = 1 for all n, so that the
sequence of Dirac measures δx1 , δx2 , . . . does not converge to δx in the Kolmogorov metric
either.

Now consider another example: take 0 < p < 1 and let Xn ∼ Bin(n, p), n ∈ N be binomial
random variables. Define

Yn := var(Xn)−1/2
(
Xn − EXn

)
=

Xn − np√
np(1− p)

. (A.1.2)

Then the sequence Yn, n ∈ N, does not converge to the standard normal distribution
N (0, 1) in the total variation metric: letting A :=

{
k/
√
np(1− p) ; k ∈ Z, n ∈ N

}
, we

have P(Yn ∈ A) = 1 for all n ∈ N, while N (0, 1){A} = 0. However, by the classical
Laplace central limit theorem, it converges in dK.

A.2 The Wasserstein metric

As seen in the previous section, convergence of a sequence of points does not imply
convergence of the underlying sequence of the Dirac measures in all metrics. Here, we
define a metric for which this is true. However, this metric will not be defined on all
probability measures.

Definition A.2.1. Let S be endowed with a metric d and let S be the underlying Borel
σ-algebra. A probability measure µ ∈ Pr(S,S ) has finite first absolute moment with
respect to the underlying metric d) if∫

d(x, y)µ(dy) <∞ (A.2.1)

for some (all) x ∈ S. The space of Borel probability measures with finite first absolute

moment with respect to a metric d will be denoted by PrL
1

(S, d).

Remark A.2.2. For each probability measure µ ∈ PrL
1

(S, d) and each Lipschitz function
f : S → R, we have 〈|f | , µ〉 <∞.

Definition A.2.3. The Wasserstein metric (also known as Dudley, Fortet–Mourier or

Kantorovich metric) on PrL
1

(S, d) is defined by

dW(µ, ν) := sup
M1(f)≤1

∣∣〈f , ν〉 − 〈f , µ〉∣∣ , (A.2.2)

where

M1(f) := sup
x 6=y

|f(x)− f(y)|
d(x, y)

(A.2.3)
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(notice that M1(f) is defined differently in (B.1.2), but the definitions coincide by Propo-
sition B.1.9).

Proposition A.2.4. The right hand side of (A.2.2) is finite for any two probability

measures µ, ν ∈ PrL
1

(S, d).

Proof. First, we check finiteness. Taking f with M1(f) ≤ 1 and choosing arbitrary
z ∈ S, observe that

∣∣〈f , ν〉 − 〈f , µ〉∣∣ =

∣∣∣∣∫
S

∫
S

(
f(x)− f(y)

)
µ(dx) ν(dy)

∣∣∣∣
≤
∫
S

∫
S

d(x, y)µ(dx) ν(dy)

≤
∫
S

∫
S

(
d(x, z) + d(y, z)

)
µ(dx) ν(dy)

=

∫
S

d(x, z)µ(dx) +

∫
S

d(y, z) ν(dy) <∞ .

(A.2.4)

From Proposition A.1.7, it follows that Lipschitz functions separate probability measures.
Therefore, by Proposition A.1.1, dW is indeed a metric. More precisely, the conditions of
Proposition A.1.7 are fulfilled because the indicator of any closed set can be expressed as
a limit of a uniformly bounded sequence of Lipschitz functions, while closed sets form a
π-system generating the Borel σ-algebra S . This completes the proof.

There are several alternative definitions of the Wasserstein metric. A very important one,
stated here as a theorem, is based on couplings.

Theorem A.2.5. If S is separable, then for any two probability measures
µ, ν ∈ PrL

1

(S, d), we have
dW(µ, ν) = inf E

[
d(X, Y )

]
, (A.2.5)

where the minimum runs over all pairs of random variables X and Y defined on the same
probability space, where X follows the distribution µ and Y follows the distribution ν.

Partial proof. For X ∼ µ and Y ∼ ν being defined on the same probability space and
for f : S → R with M1(f) ≤ 1, observe that∣∣〈f , µ〉 − 〈f , ν〉∣∣ =

∣∣E[f(X)
]
− E

[
f(Y )

]∣∣ ≤ E
∣∣f(X)− f(Y )

∣∣ ≤ E
[
d(X, Y )

]
.

Taking the supremum over all f in the left hand side and the infimum over all appropriate
pairs (X, Y ) in the right hand side, we find that dW(µ, ν) ≤ inf E

[
d(X, Y )

]
. The proof of

the opposite inequality is much more difficult and will be omitted here, but see Rachev [25].

Clearly, the total variation distance is stronger than the Kolmogorov distance. However,
these two metrics are in general uncomparable to the Wasserstein distance, although in
certain special cases, comparison is possible.
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Example A.2.6. On Z, we have M1(1A) ≤ 1 for all A ⊆ Z. Therefore, dTV ≤ dW, so
that the Wasserstein metric is uniformly stronger than the total variation metric.

Example A.2.7. If S is bounded, the total variation metric is stronger than the Wasser-
stein metric – see Corollary A.5.9.

Example A.2.8. On an unbounded metric space with at least one accumulation point,
the total variation and the Wasserstein metric are uncomparable: neither is stronger than
the other. This is shown by the following two counterexamples: first, take an accumulation
point x, so that there exist a sequence of points x1, x2, . . ., which are all different from x
and converge to x. Clearly, dTV(δxn , δx) = 1 and dW(δxn , δx) = d(xn, x). Therefore, the
sequence δx1 , δx2 , . . . converges to δx in the Wasserstein metric, but it does not converge in
the total variation metric. Next, choose an arbitrary point y ∈ S. Since S is unbounded,
there exists a sequence y1, y2, . . ., such that d(yn, y) ≥ n for all n. Now consider the
sequence of probability measures µ1, µ2, . . . defined as

µn :=

(
y yn

1− 1
n

1
n

)
=

(
1− 1

n

)
δy +

1

n
δyn . (A.2.6)

Since dTV(µn, δy) = 1/n, this sequence converges to the Dirac measure δy in the total vari-
ation metric. However, taking the test function f(x) := d(x, x0), we find that 〈f , µn〉 ≥ 1
for all n ≥ 1, while 〈f , δx0〉 = 0, so that the sequence µn does not converge to δx0 in the
Wasserstein metric.

Considering the same two examples on the real line, we find that the Kolmogorov and
the Wasserstein metric are uncomparable, too.

However, it turns out that for some probability measures ν, any neighbourhood of ν in the
Kolmogorov metric restricted to PrL

1

(S, d) is also a neighbourhood of ν in the Wasserstein

metric. Consequently, any sequence of probability measures in PrL
1

(S, d) which converges
to ν in the Wasserstein metric also converges to ν in the Kolmogorov metric.

Proposition A.2.9. If ν ∈ PrL
1

(R) is a probability measure with density bounded from
above by B, then we can estimate

dK(µ, ν) ≤
√

2B dW(µ, ν) (A.2.7)

for all µ ∈ PrL
1

(R).

Proof. For any a ∈ R, define fa(x) := 1(x ≤ a), so that
dK(µ, ν) = supa∈R

∣∣〈fa , µ〉 − 〈fa , ν〉∣∣. Next, for any a < b, define

fa,b(x) :=


1 ; x ≤ a

b− x
b− a

; a ≤ x ≤ b

0 ; x ≥ b
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and observe that M1(fa,b) = 1/(b−a). Therefore,
∣∣〈fa,b , µ〉−〈fa,b , ν〉∣∣ ≤ dW(µ, ν)/(b−a).

Next, observe that

〈fa,b , ν〉 − 〈fa , ν〉 =

∫ b

a

b− x
b− a

ν(dx) ≤ B

∫ b

a

b− x
b− a

dx =
B(b− a)

2
,

〈fb , ν〉 − 〈fa,b , ν〉 =

∫ b

a

x− a
b− a

ν(dx) ≤ B

∫ b

a

x− a
b− a

dx =
B(b− a)

2
.

Therefore, for any a ∈ R and ε > 0,

〈fa , µ〉 − 〈fa , ν〉 ≤ 〈fa,a+ε , µ〉 − 〈fa,a+ε , ν〉+
Bε

2
,

〈fa , ν〉 − 〈fa , µ〉 ≤ 〈fa−ε,a , ν〉 − 〈fa−ε,a , µ〉+
Bε

2
.

Noting that the functions fa,a+ε and fa−ε,a have Lipschitz constant 1/ε and combining
both estimates with the bound in terms of the Wasserstein distance, we find that∣∣〈fa , µ〉 − 〈fa , ν〉∣∣ ≤ dW(µ, ν)

ε
+
Bε

2
.

Taking the supremum over all a, we obtain

dK(µ, ν) ≤ dW(µ, ν)

ε
+
Bε

2
.

Optimization over ε completes the proof.

A.3 More on the Kolmogorov metric

The Kolmogorov metric measures the distance between two probability measures in terms
of the indicators of half-lines. However, we often need to consider more general test
functions. Here, we show that we can take functions with bounded total variation on the
whole real line. We refer to the results listed in Section B.2.

In view of definition B.2.1, define the total variation of a function f on the whole real line
as

V (f) := V (f ;R) = sup
n∑
i=1

∣∣f(xi)− f(xi−1)
∣∣ ,

where the supremum runs over all possible finite sequences x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn. A
function f has bounded variation if its total variation is finite.

Proposition A.3.1. For any two probability measures µ and ν on
(
R,B(R)

)
, we have

dK(µ, ν) = sup
{∣∣〈f , µ〉 − 〈f , ν〉∣∣ ; V (f) ≤ 1

}
.

Remark A.3.2. If f has bounded variation, 〈f , µ〉 exists for all Borel measures µ
because f is bounded and Borel measurable.
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Corollary A.3.3. For any two probability measures µ and ν on
(
R,B(R)

)
and any

function f with bounded variation, we have∣∣〈f , µ〉 − 〈f , ν〉∣∣ ≤ dK(µ, ν)V (f) .

Proof of Proposition A.3.1. Letting δ := dK(µ, ν), it suffices to prove that∣∣〈f , µ〉 − 〈f , ν〉∣∣ ≤ δ V (f) (A.3.1)

for all functions f : R→ R with bounded variation. We shall do it step by step, knowing
that (A.3.1) holds for functions of the form f(x) = 1(x ≤ a).

Step 1 : assume f(x) = 1(x < a). Letting fn(x) = 1
(
x ≤ a − 1

n

)
, observe that the

sequence fn is monotone increasing and converges pointwise to f . The desired inequality
(A.3.1) now follows from the monotone convergence theorem.

Step 2 : assume that f is a basic jump function, i. e.,

f(x) =


0 x < a
θ x = a
1 x > a

for some θ ∈ [0, 1]. Noting that V (f) = 1 and f(x) = 1 − (1 − θ) 1(x ≤ a) − θ 1(x < a)
and applying Step 1, we deduce that (A.3.1) is true for f .

Step 3 : assume that f is a bounded monotone increasing jump function, i. e., of the
form f =

∑∞
n=1 cnfn, where

∑∞
n=1 cn < ∞. By part (3) of Proposition B.2.7, we have

V (f) =
∑∞

n=1 cn. Clearly, 〈f , µ〉 =
∑∞

n=1〈fn , µ〉 and 〈f , ν〉 =
∑∞

n=1〈fn , ν〉. Therefore,
(A.3.1) is true for f .

Step 4 : assume that f is absolutely continuous, bounded and monotone increasing.
In this case, f(x) =

∫ x
−∞ f

′(a) da (see Theorem 6.4.2 of Heil [20]). By part (3) of

Proposition B.2.7, we have V (f) =
∫∞
−∞ f

′(a) da. Rewriting the integral as f(x) =∫∞
−∞ f

′(a) 1(x ≥ a) da and applying Fubini’s theorem, we find that

〈f , µ〉 =
∫∞
−∞ µ

(
[a,∞)

)
f ′(a) da and 〈f , ν〉 =

∫∞
−∞ ν

(
[a,∞)

)
f ′(a) da, so that (A.3.1) is

true for f .

Step 5 : assume that f is bounded and monotone increasing. By Lemma 1.6.31 (iii) of
Tao [33], f can be decomposed as f = g + h, where g is a jump function g is absolutely
continuous, and both functions are bounded and monotone increasing. Again, by part (3)
of Proposition B.2.7, we have V (f) = V (g)+V (h). Therefore, (A.3.1) follows from Steps 3
and 4.

Step 6 : assume the general case where f has bounded variation. In this case, (A.3.1)
follows from the previous step and the Jordan decomposition theorem (Theorem B.2.4).

A.4 Weak topologies

In Section A.1, we introduced a construction of a metric on the set of probability measures
based on a given class of test functions F . This metric induces a topology, which will be
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referred to as the metric topology with respect to F . However, the class F introduces
another very natural topology.

Definition A.4.1. Let the set M of probability measures and the class F of test
functions be such that µ(|f |) < ∞ for all µ ∈ M and f ∈ F . The weak topology on
M with respect to F is the weakest topology, such that the functionals µ 7→ 〈f , µ〉 are
continuous for all f ∈ F . In other words, this is the topology with a subbasis consisting
of all sets of the form

G(f, U) := {ν ∈M ; 〈f , ν〉 ∈ U} , (A.4.1)

where f ∈ F and U is an open set in R.

Remark A.4.2. For each µ ∈M , one can easily check that the sets

N(µ; f1, . . . , fn; ε1, . . . , εn) :=
{
ν ∈M ;

∣∣〈fi , ν〉 − 〈fi , µ〉∣∣ < εi, i = 1, . . . , n
}
, (A.4.2)

where f1, . . . , fn ∈ F and ε1, . . . , εn > 0, form a fundamental system of neighbourhoods
of µ. Therefore, in this topology, a sequence of probability measures µn converges to a
probability measure µ if and only if the sequence 〈f , µn〉 converges to 〈f , µ〉 for each
f ∈ F . We say that the sequence µn weakly converges to µ.

Comparing the topology introduced here with the topology from Section A.1, we obtain
the following result.

Proposition A.4.3. For given M and F , the underlying weak topology is weaker than
the underlying metric topology.

Proof. Let K(µ, r) denote the open ball about µ with radius r, that is, K(µ, r) = {ν ;
d(µ, ν) < r}. It suffices to prove that each set N(µ; f1, . . . , fn; ε1, . . . , εn) contains an open
ball of the form K(µ, r). However, this is fulfilled by choosing r := min{ε1, . . . , εn}.

Remark A.4.4. Typically, the underlying metric topology is strictly stronger than the
underlying weak topology, as illustrated in Example A.4.10 below.

Topologies have numerous important properties. The following assertion concerns two of
them, which are satisfied by all metric topologies. The proof is left to the reader.

Proposition A.4.5.

(1) The weak topology defined by the subbasis given in (A.4.1) is Hausdorff if and only
if the space F of test functions separates the probability measures in M .

(2) If F is countable, then the weak topology is first countable.

Definition A.4.6. Let S be endowed with a topology and let S be the underlying Borel
σ-algebra. The usual weak topology on Pr(S,S ) is the one with respect to the class of all
bounded continuous functions.
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Proposition A.4.7. If S is metrizable, then the class of all bounded continuous functions
on S separates all probability measures.

Proof. We apply Proposition A.1.7: it suffices to prove that there exists a π-sistem P,
which generates S and is such that for any set A ∈P, there exists a uniformly bounded
sequence of continuous functions which converges pointwise to the indicator 1A of the
set A. However, since S is the Borel σ-algebra, the family of all closed sets, which is
a π-system, generates S . Thus, for any closed set A, we need to construct a uniformly
bounded sequence of continuous functions which converges pointwise to 1A. If A is empty,
we may take all of them to be zero. Otherwise, take a metric d on S and put

fn(x) :=
(
1− n d(x,A)

)
+
.

This completes the proof.

Combining Propositions A.4.5 and A.4.7 leads to

Corollary A.4.8. If S is metrizable, then the usual weak topology on Pr(S,S ) is Haus-
dorff.

The Hausdorff property is all that we shall need from the properties of the weak topology
on a space of probability measures. However, much more can be proved.

Theorem A.4.9. If S is separable and metrizable, then Pr(S,S ) with the weak topology
is also metrizable.

We shall omit the proof. For the case where S is complete, see, for example, Rogers
and Williams [27], pp. 205–209. This proof is very indirect (it refers to the Banach–
Alaoglu theorem). However, the result can also be proved directly, by considering the
Lévy–Prokhorov metric on Pr(S,S ) based on a metric d in S:

ρ(µ, ν) := inf{ε ≥ 0 ; µ(A) ≤ ν(Aε) + ε for all closed sets A} , (A.4.3)

where Aε := {x ∈ S ; d(x,A) < ε}. Some rather involved calculation shows that this
is really a metric which induces the weak topology. A substantial part of this is derived
in Ethier and Kurtz [18] on pages 96–110, in fact all except for the fact that the weak
topology is stronger than the topology induced by the Lévy–Prokhorov metric. This has
to be verified directly – referring just to sequences does not suffice.

Now we turn to the example where the metric topology is strictly stronger than the weak
topology with respect to the same class of test functions.

Example A.4.10. Let S be endowed with a topology, under which S is metrizable and
is not discrete, and let S be the Borel σ-algebra. Let F be the class of all bounded
continuous functions S → [0, 1]. It is clear that the weak topology with respect to this
class is just the usual weak topology. We shall show that it is strictly weaker than the
underlying metric topology, noting that dF is a metric because F separates all probability
measures by Proposition A.4.7.
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Since S is not discrete, there exists a point x, such that {x} is not an open set. Since
S is metrizable, there exists a sequence of points xn different from x, which converges to
x. Then it is clear that the sequence of the Dirac measures δxn weakly converges to δx.
On the other hand, it is clear that for each n ∈ N, there exists a function f ∈ F , such
that f(x) = 0 and f(xn) = 1, so that dF (δx, δxn) = 1. As a result, the sequence does not
converge in the metric topology.

On the real line, the usual weak topology is characterized by the following property.

Proposition A.4.11. Let µ1, µ2, . . . , and µ be Borel probability measures on the real line
with the underlying cumulative distribution functions F1, F2, . . . and F , that is, Fn(a) =
µn
(
(−∞, a]

)
and F (a) = µ

(
(−∞, a]

)
. Then the sequence µ1, µ2, . . . converges to µ in the

usual weak topology if and only if the values F1(c), F2(c), . . . converge to F (a) for each c
where F is continuous, i. e., where µ({c}) = 0.

Proof. Suppose first that the measures weakly converge. Similarly as in the proof of
Proposition A.2.9, for any a < b, define

fa,b(x) :=


1 ; x ≤ a

b− x
b− a

; a ≤ x ≤ b

0 ; x ≥ b

.

Observe that fa,b(x) = 1
b−a

∫ b
a

1(−∞,t](x) dt, so that

〈fa,b , µ〉 =
1

b− a

∫ b

a

F (t) dt .

Now take a point c where F is continuous and take ε > 0. There exists δ > 0, such that
|F (x)− F (c)| < ε/2 for all x with |x− c| < δ. Consequently,

F (c)− ε

2
< 〈fc−δ,c , µ〉 ≤ F (c) ≤ 〈fc,c+δ , µ〉 ≤ F (c) +

ε

2
.

Since the measures weakly converge, there exists n0, such that
∣∣〈fc,c+δ , µn〉−〈fc,c+δ , µ〉∣∣ <

ε/2 and
∣∣〈fc−δ,c , µn〉 − 〈fc−δ,c , µ〉∣∣ < ε/2 for all n ≥ n0. Now estimate

Fn(c)− F (c) < 〈fc,c+δ , µn〉 − 〈fc,c+δ , µ〉+
ε

2
< ε

and
F (c)− Fn(c) < 〈fc−δ,c , µ〉+

ε

2
− 〈fc−δ,c , µn〉 < ε

This proves that the sequence F1(c), F2(c), . . . converges to F (c).

Now we turn to the converse: suppose that the values F1(c), F2(c), . . . converge to F (c)
for each c where F is continuous. Equivalently, the sequence µ1(1(−∞,c]), µ2(1(−∞,c]), . . .
converges to µ(1(−∞,c]). Consequently, for any function of the form

g = a0 +
m∑
k=1

ak 1(−∞,ck] ,
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where F is continuous at all points c1, . . . , cm and where a0, a1, . . . , am are any real num-
bers, the sequence 〈g , µ1〉, 〈g , µ2〉, . . . converges to 〈g , µ〉.

Now take a continuous function f : R → R with |f(x)| ≤ B for all x ∈ R. Wa can
assume that B > 0. Take ε > 0. Recalling that continuity points of F are everywhere
dense, observe that there exist points a < b, where F is continuous and are such that
µ
(
−∞, a]

)
< ε/(15B) and µ

(
[b,∞)

)
< ε/(15B). Next, there exists n0, such that |Fn(a)−

F (a)| < ε/(15B) and |Fn(b) − F (b)| < ε/(15B) for all n ≥ n0. As a result, we have
µn
(
−∞, a]

)
< 2ε/(15B) and µn

(
(b,∞)

)
< 2ε/(15B).

Since f is uniformly continuous on [a, b], there exists δ > 0, such that |f(x)−f(y)| < ε/15
for all x, y with |x−y| < δ. Next, there exist points a = c0 < c1 < · · · < cm = b, such that
ck − ck−1 < δ for all k = 1, 2, . . . ,m and f is continuous at all ck. Consider the function

g(x) =


f(c1) ; x ≤ c1

f(c2) ; c1 < x ≤ c2

· · ·
f(cm−1) ; cm−2 < x ≤ cm−1

f(cm) ; x > cm−1 .

Observe that |g(x)− f(x)| < ε/15 for all a ≤ x ≤ b and |g(x)− f(x)| < 2B for all other
x. Therefore,∣∣〈f , µ〉 − 〈g , µ〉∣∣ ≤ ∫

(−∞,a]

|g − f | dµ+

∫
(a,b]

|g − f | dµ+

∫
(b,∞)

|g − f | dµ

< 2B
ε

15B
+

ε

15
+ 2B

ε

15B
=

5ε

15

and similarly,∣∣〈f , µn〉 − 〈g , µn〉∣∣ ≤ ∫
(−∞,a]

|g − f | dµn +

∫
(a,b]

|g − f | dµn +

∫
(b,∞)

|g − f | dµn

< 2B
2ε

15B
+

ε

15
+ 2B

2ε

15B
=

9ε

15

for all n ≥ n0. Finally, since

g =
m−1∑
k=1

(
f(ck)− f(ck+1)

)
1(−∞,ck] +f(cm) ,

the sequence 〈g , µ1〉, 〈g , µ2〉, . . . converges to 〈g , µ〉. Therefore, there exists n1 ≥ n0,
such that

∣∣〈g , µn〉 − 〈g , µ〉∣∣ < ε/15 for all n ≥ n1 and we have∣∣〈f , µn〉 − 〈f , µ〉∣∣ ≤ ∣∣〈f , µn〉 − 〈g , µn〉∣∣+
∣∣〈g , µn〉 − 〈g , µ〉∣∣+

∣∣〈g , µ〉 − 〈f , µ〉∣∣ < ε ,

so that the sequence 〈f , µ1〉, 〈f , µ2〉, . . . indeed converges to 〈f , µ〉.
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A.5 Change of class of test functions

We often consider different classes of test functions. In view of this, it is useful to compare
the underlying metric and weak topologies. In this section, we shall consider three im-
portant relationships between the classes: inclusion, linear combinations and limits. The
first case is immediate and is therefore stated without proof.

Proposition A.5.1. Let F and G be classes of test functions with F ⊆ G . Assume
that 〈|g| , µ〉 <∞ for all µ ∈M and g ∈ G .

(1) Let dF and dG be defined as in (A.1.1). If dF is a metric on M , so is dG and we
have dF ≤ dG . Thus, the metric dF is uniformly weaker than dG .

(2) The weak topology with respect to F is weaker than the weak topology with respect
to G .

Proposition A.5.2. Let F be a class of test functions. Assume that 〈|f | , µ〉 < ∞ for
all µ ∈M and f ∈ F .

(1) If

F̄ =

{
α0 +

n∑
i=1

αifi ; fi ∈ F ,
n∑
i=1

|αi| ≤ 1, n ∈ N

}
, (A.5.1)

then the metric with respect to F agrees with the one with respect to F̄ .

(2) The weak topology with respect to F agrees with the weak topology with respect to
span

(
{1} ∪F

)
.

Corollary A.5.3. If F ⊆ G ⊆ F̄ , the metric with respect to G agrees with the metric
with respect to F . Similarly, if F ⊆ G ⊆ span

(
{1} ∪F

)
, the weak topology with respect

to G coincides with the weak topology with respect to F . In particular, the weak topology
with respect to F̄ coincides with the weak topology with respect to F .

Proof of Proposition A.5.2.

(1): Denote the underlying metrics by dF and dF̄ and take any probability measures
µ, ν ∈ M . Clearly, dF (µ, ν) ≤ dF̄ (µ, ν). However, we also have

∣∣〈f , ν〉 − 〈f , µ〉∣∣ ≤
dF (µ, ν) for all f ∈ F̄ , so that dF̄ (µ, ν) ≤ dF (µ, ν).

(2): It suffices to prove that the weak topology with respect to span
(
{1} ∪F

)
is weaker

than the weak topology with respect to F . In order to prove the latter, it suffice to
prove that the set G(f, U) defined as in (A.4.1) is open in the weak topology with respect
to F for each f ∈ span

(
{1} ∪ F

)
and each open set U ⊆ R. Take arbitrary f =

α0 +
∑n

i=1 αifi ∈ span
(
{1} ∪ F

)
, where fi ∈ F , and arbitrary µ ∈ G(f, U), that is,

〈f , µ〉 = α0 +
∑n

i=1 αi〈fi , µ〉 ∈ U . Since the map (y1, . . . yn) 7→
∑n

i=1 αiyi is continuous,
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there exist open sets Ui ⊆ R, such that 〈fi , µ〉 ∈ Ui and α0 +
∑n

i=1 αiyi ∈ U for all
yi ∈ Ui. Therefore, µ ∈

⋂n
i=1G(fi, Ui) ⊆ G(f, U), implying that G(f, U) is indeed open

in the weak topology with respect to F . This completes the proof.

Proposition A.5.4. Let F and G be classes of measurable test functions on (S,S ).
Assume that 〈|f | , µ〉 <∞ for all µ ∈M and f ∈ F ∪ G .

(1) Let dF and dG denote the metrics with respect to F and G , respectively, by (A.1.1).
If for each f ∈ F , there exists a sequence of test functions fn ∈ G , such that
limn→∞〈fn , µ〉 = 〈f , µ〉 for all µ ∈M , then dF ≤ dG .

(2) If for each f ∈ F and each µ ∈M , there exist sequences of functions f+
n , f

−
n ∈ G ,

such that f−n ≤ f ≤ f+
n and limn→∞〈f+

n , µ〉 = limn→∞〈f−n , µ〉 = 〈f , µ〉, then the
weak topology on M with respect to G is stronger than the one with respect to F .

Corollary A.5.5. Under the assumptions of the preceding lemma along with the as-
sumption that G ⊆ F , the metrics as well as the weak topologies based on F and G
agree.

Remarks.

(1) The conditions of part (1) are fulfilled if the sequence fn converges to f pointwise
and is either monotone or uniformly bounded.

(2) The conditions of part (2) are fulfilled if the sequences f+
n and f−n pointwise converge

to f and one of the following two conditions is fulfilled: either both sequences are
uniformly bounded or f+

n is monotonically decreasing, while f−n is monotonically
increasing.

Proof of Proposition A.5.4.

(1): Immediate.

(2): For all µ ∈ M , f ∈ F and ε > 0, it suffices to construct a neighbourhood of µ in
the weak topology with respect to G , which is contained in the set N(µ; f ; ε) defined as
in (A.4.2). Taking ε > 0 and appropriate sequences f+

n and f−n , there exists n, such that
〈f , f+

n 〉 − ε/2 < 〈f , µ〉 < 〈f−n , µ〉+ ε/2. Define

U :=
{
ν ∈M ; 〈f+

n , ν〉 − 〈f+
n , µ〉 <

ε

2
, 〈f−n , ν〉 − 〈f−n , µ〉 <

ε

2

}
. (A.5.2)

Clearly, µ ∈ U and U is G -weakly open. Moreover,

〈f , ν〉 ≤ 〈f+
n , ν〉 = 〈f+

n , ν〉 − 〈f+
n , µ〉+ 〈f+

n , µ〉 < 〈f , µ〉+ ε (A.5.3)

and
〈f , ν〉 ≥ 〈f−n , ν〉 = 〈f−n , ν〉 − 〈f−n , µ〉+ 〈f−n , µ〉 > 〈f , µ〉 − ε (A.5.4)

for all ν ∈ U . Therefore, U ⊆ N(µ; f ; ε) and the proof is complete.
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As a simple example, consider the following characterization of the total variation metric.

Proposition A.5.6. We have

dTV(µ, ν) = sup
f is measurable

0≤f≤1

∣∣〈f , ν〉 − 〈f , µ〉∣∣ . (A.5.5)

Remark A.5.7. For the total variation metric, some authors take the following one
instead:

d(µ, ν) = sup
f is measurable
−1≤f≤1

∣∣〈f , ν〉 − 〈f , µ〉∣∣ = 2 dTV(µ, ν) . (A.5.6)

Proof of Proposition A.5.6. By part (1) of Proposition A.5.2, the class of indicators
can be replaced by the class of all measurable step functions from S to [0, 1]. This is
because each measurable [0, 1]-valued step function can be represented as

f(x) =


y0 ; x ∈ H0

y1 ; x ∈ H1
...

...
yn ; x ∈ Hn ,

where 0 = y0 ≤ y1 ≤ · · · ≤ yn ≤ 1 and where H0, H1, . . . are disjoint measurable sets, and
this can be further expressed as

f = y1 1H1 +(y2 − y1) 1H1∪H2 + · · ·+ (yn − yn−1) 1H1∪H2∪···∪Hn ,

noting that
∑n

k=1(yk − yk−1) = yn ≤ 1.

For each measurable [0, 1]-valued function, there exists a monotone sequence of measur-
able [0, 1]-valued step functions converging pointwise to it. Therefore, by part (1) of
Proposition A.5.4, the class of all measurable [0, 1]-valued step functions can be further
replaced by the class of all measurable functions from S to [0, 1]. This completes the
proof.

Corollary A.5.8. The topology induced by the total variation metric is stronger than the
usual weak topology.

Corollary A.5.9. If S is a bounded metric space, then the total variation metric on
Pr(S,S ) is stronger than the Wasserstein metric. More precisely, if D is the diameter
of S, we have dW(µ, ν) ≤ D dTV(µ, ν).

Proposition A.5.10. Let F be a class of test functions on (S,S ), such that 〈|f | , µ〉 <
∞ for all µ ∈M . In addition, suppose that at least one of the following two conditions
is fulfilled:

(1) For each open set G ⊆ S, there exists a sequence of functions fn ∈ F , fn ≤ 1G,
which is uniformly bounded from below and converges pointwise to 1G.

(2) For each closed set F ⊆ S, there exists a sequence of functions fn ∈ F , fn ≥ 1F ,
which is uniformly bounded from above and converges pointwise to 1F .
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Then the weak topology with respect to F is stronger than the usual weak topology on M .

Proof. First observe that, by part (2) of Proposition A.5.2, we may assume without
loss of generality that F is a vector space and that it contains all constants. Under this
assumption, 1− f ∈ F for all f ∈ F , so that conditions (1) and (2) are equivalent. We
may assume that both are fulfilled.

We shall use part (2) of Proposition A.5.4: for each bounded and continuous f : S → R
and each µ ∈ M , we shall construct sequences of functions f+

n , f
−
n ∈ F , such that

f−n ≤ f ≤ f+
n and limn→∞〈f+

n , µ〉 = limn→∞〈f−n , µ〉 = 〈f , µ〉. Without loss of generality,
we can assume that f is [0, 1]-valued. For any t ∈ R, let:

Ft := {x ; f(x) ≥ t} , Gt := {x ; f(x) > t} (A.5.7)

One can easily check that

f − 1

n
≤ 1

n

n−1∑
k=1

1Gk/n ≤ f ≤ 1

n

n−1∑
k=0

1Fk/n ≤ f +
1

n
(A.5.8)

for all n ∈ N. From assumption (1) and the dominated convergence theorem, it follows
that there exist functions f−n,1, . . . , f

−
n,n−1 ∈ F , such that f−n,k ≤ 1Gk/n and 〈f−n,k , µ〉 >

µ(Gk/n)−1/n for all k. Similarly, from assumption (2), it follows that there exist functions
f+
n,0, . . . , f

+
n,n−1 ∈ F , such that f+

n,k ≥ 1Fk/n and 〈f+
n,k , µ〉 < µ(Fk/n) + 1/n for all k. Put

f+
n :=

n−1∑
k=0

f+
n,k , f−n :=

n−1∑
k=1

f−n,k . (A.5.9)

Clearly, f−n ≤ f ≤ f+
n . A short calculation shows that

〈f , µ〉 − 2

n
≤ 〈f−n , µ〉 ≤ 〈f , µ〉 ≤ 〈f+

n , µ〉 ≤ 〈f , µ〉+
2

n
, (A.5.10)

so that the sequences f−n and f+
n satisfy the necessary conditions and the proof is complete.

Corollary A.5.11. If S is endowed with a metric d, then the topology induced by the
Wasserstein metric is stronger than the usual weak topology.

Proof. First, by Proposition A.4.3, the topology induced by the Wasserstein metric is
stronger than the weak topology with respect to the class of functions f with M1(f) ≤ 1.
By part (2) of Proposition A.5.2, the latter coincides with the topology with respect to
the class of all Lipschitz functions. Now observe that the latter class fulfills condition (2)
of Proposition A.5.10: for a closed set F , the latter is satisfied with

fn(x) :=
(
1− n d(x, F )

)
+

(A.5.11)

(under the convention that d(x, ∅) =∞). This completes the proof.
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Corollary A.5.12. The topology on Pr
(
R,B(R)

)
induced by the Kolmogorov metric is

stronger than the usual weak topology.

Proof. Again, by Proposition A.4.3, the topology induced by the Kolmogorov metric
is stronger than the weak topology with respect to the class of indicators of all closed
half-lines. By part (2) of Proposition A.5.2, the latter coincides with the topology with
respect to the class of all linear combinations of indicators of closed half-lines. Now we
show that this class fulfills condition (1) of Proposition A.5.10. To see this, observe that
each open set G on the real line is a countably infinite union of disjoint intervals of form
(u, v]. Thus, we may write

1G =
∞∑
k=1

1(uk,vk] .

As the underlying partial sums are linear combinations of indicators of closed half-lines
and are smaller than 1G, condition (1) is indeed satisfied. This completes the proof.



Appendix B

Some real analysis

B.1 Differentiation of absolutely continuous

functions

Throughout this section, let I denote an interval on the real line.

The classical fundamental theorem of calculus says that a continuously differentiable func-
tion f : I → R satisfies

f(b)− f(a) =

∫ b

a

f ′(x) dx (B.1.1)

for all a, b ∈ I. This is also true for many functions which are only almost everywhere
differentiable, i. e., f(x) = |x|.
Definition B.1.1. A measurable function f ′ : T → R is an almost-everywhere derivative
of a function f : I → R if the set of points in I where f ′ is not the derivative of f has
Lebesgue measure zero.

However, if f ′ is an almost-everywhere derivative of f , the fundamental theorem of calculus
(B.1.1) need not be true. A prominent counter-example is the Cantor–Lebesgue function
– see Theorem 5.1.2 of Heil [20].

The Cantor–Lebesgue function is continuous, but its continuity is not ‘nice’ enough. It
turns out that the validity of (B.1.1) is equivalent to a stronger form of continuity.

Definition B.1.2. A function f : [a, b] → R is absolutely continuous if for each ε > 0,
there exists δ > 0, such that for any (finite or infinite) family of non-overlapping intervals
[ak, bk] ⊆ [a, b] with

∑
k(bk − ak) < δ, we have

∑
k

∣∣f(bk)− f(ak)
∣∣ < ε.

Remark B.1.3. A restriction of an absolutely continuous function to a subinterval is
also absolutely continuous.

Definition B.1.4. A function f : I → R is absolutely continuous if all restrictions to f
to closed subintervals of I are absolutely continuous.

Example B.1.5. Every Lipschitz function f : I → R is absolutely continuous.

75
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The following result states that absolute continuity is sufficient and necessary for the
fundamental theorem of calculus to hold. For the proof, the reader is referred to Heil [20],
Theorem 6.4.2.

Definition B.1.6. A function f : I → R is locally Lebesgue integrable if all restrictions
of f to closed subintervals of I are Lebesgue integrable. The space of all locally Lebesgue
integrable functions on I will be denoted by L1

loc(I).

Theorem B.1.7. A function f : I → R is absolutely continuous if and only if it is
differentiable almost everywhere on I and some/any almost-everywhere derivative f ′ of f
is in L1

loc(I) (with respect to the Lebesgue measure) and satisfies (B.1.1) for all a, b ∈ I; of
course, the integral in the right hand side of (B.1.1) is interpreted as the Lebesgue integral
over the underlying interval or its negative value if a > b.

Convention B.1.8. In the context of absolutely continuous functions f , f ′ will denote
an almost-everywhere derivative of f unless specified otherwise.

In particular, all bounded measurable functions on I are in L1
loc(I). For a function f : I →

R, define

M1(f) :=

{
ess supx∈I |f ′(x)| ; f is absolutely continuous

∞ ; otherwise
(B.1.2)

(clearly, the definition is independent of the version of f ′). Next, for r = 2, 3, 4, . . ., define

Mr(f) :=

{
M1

(
f (r−1)

)
; f is (r − 1)-times continuously differentiable on I

∞ ; otherwise.
(B.1.3)

Proposition B.1.9. For any function f : I → R, we have

M1(f) = sup
x 6=y

|f(x)− f(y)|
|x− y|

.

Sketch of proof. Denote L(f) := supx 6=y
|f(x)−f(y)|
|x−y| . First, we show that M1(f) ≤

L(f). Without loss of generality, we may assume that L(f) < ∞. In this case, f is
Lipschitz and therefore absolutely continuous. By Theorem B.1.7, there exists a function
f ′, such that f ′(x) is the classical derivative of f at x for Lebesgue-almost all x ∈ I.
However, for such x, we have |f ′(x)| ≤ L(f). Therefore, |f ′(x)| ≤ L(f) for Lebesgue-
almost all x. As a result, M1(f) ≤ L(f).

Now we prove that L(f) ≤ M1(f). Similarly as before, we may assume that M1(f) <
∞. Therefore, f is absolutely continuous. By Theorem B.1.7, we have |f(b) − f(a)| =∣∣∫ b
a
f ′(x) dx

∣∣ ≤ |b − a| ess supx∈I |f ′(x)| = |b − a|M1(f). Dividing by |b − a| and taking
supremum over a and b, we find that L(f) ≤M1(f), completing the proof.

B.2 Functions with bounded variation

Like in the previous section, I will denote an interval on the real line throughout this
section.
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Definition B.2.1. The total variation of a function f : I → R is defined as

V (f) := sup
n∑
i=1

∣∣f(xi)− f(xi−1)
∣∣ ,

where the supremum runs over all possible finite sequences x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn
of points in I. The function f can be initially defined on a larger set than I. In this
case, denote by V (f ; I) the total variation of the restriction of f to I, which will be also
referred as the total variation of f on I.

A function f has bounded variation on I if its total variation on I is finite.

Remark B.2.2. Each function with bounded variation is bounded.

The proof of the following assertion is left to the reader as an exercise.

Proposition B.2.3. If f : I → R is monotone increasing or monotone decreasing, then

V (f) = sup f − inf f .

Moreover, let a1, a2, . . . be a sequence of points in I chosen as follows: let a be the lower
and b the upper endpoint of I. If a ∈ I, let an = a for all n. Otherwise, let an converge
to a. Similarly, choose a sequence b1, b2, . . ., replacing a with b. Then we have

V (f) = lim
n→∞

∣∣f(bn)− f(an)
∣∣ .

Theorem B.2.4 (Jordan decomposition theorem). For each function f : I → R with
bounded variation, there exist monotone increasing functions g and h, such that f = g−h.
Moreover, g and h can be chosen so that V (f) = V (g) + V (h) and that g and h are
left/right-continuous in all points where so is f .

Sketch of proof. The existence of g and h is proved in Wheeden and Zygmund [34]
for the case I = [a, b], where −∞ < a ≤ b < ∞: see Theorem 2.7 ibidem. From the
construction of g and h, one can see that V (f) = V (g) + V (h) and that g and h are
left/right-continuous in all points where so is f (exercise). The extension to the general
case is also left to the reader as an exercise.

Corollary B.2.5. Each function with bounded variation is Borel measurable.

Sketch of proof. Observe first that each monotone increasing function has at most
countably many discontinuities (see Theorem 2.8 of Wheeden and Zygmund [34]) and is
therefore Borel measurable (exercise). The result now follows from the Jordan decompo-
sition theorem.

The following result if proved in Wheeden and Zygmund [34] – see Theorem 7.31 ibidem.

Proposition B.2.6. If f : I → R is absolutely continuous, then V (f ; I) =
∫
I
|f ′(x)| dx.
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Proposition B.2.7.

(1) For any two functions g and h : I → R, we have V (g + h) ≤ V (g) + V (h).

(2) Consider a measurable space (S,S), a signed measure κ on S and a measurable
function F : I×S → R, such that the function y 7→ F (x, y) is an element of L1(|κ|)
for all x ∈ I. Letting fy(x) := F (x, y) and f(x) :=

∫
S
F (x, y)κ(dy), we have

V (f) ≤
∫
S

V (fy) |κ|(dy) . (B.2.1)

(3) If all functions fy are monotone increasing and κ is a positive measure, then (B.2.1)
holds with equality.

Proof. It suffices to prove the second part. Taking x0 ≤ x1 ≤ · · · ≤ xn, observe that

n∑
i=1

∣∣f(xi)− f(xi−1)
∣∣ =

n∑
i=1

∣∣∣∣∫
S

(
F (xi, y)− F (xi−1, y)

)
κ(dy)

∣∣∣∣
≤
∫
S

n∑
i=1

∣∣F (xi, y)− F (xi−1, y)
∣∣ |κ|(dy)

≤
∫
S

V (fy) |κ(dy)| .

Taking the supremum, we obtain (B.2.1). Finally, if the functions x 7→ F (x, y) are
monotone increasing and κ is a positive measure, take sequences an and bn as in Proposi-
tion B.2.3, where, in addition, an is monotone decreasing and bn is monotone increasing.
Now observe that

V (f) = lim
n→∞

(
f(bn)− f(an)

)
= lim

n→∞

∫
S

(
F (bn, y)− F (an, y)

)
κ(dy)

=

∫
S

lim
n→∞

(
F (bn, y)− F (an, y)

)
κ(dy)

=

∫
S

V (fy)κ(dy)

by the monotone convergence theorem. This completes the proof.

B.3 The Riemann–Stieltjes integral

The results in this section are mostly just listed. For the proofs, the reader is referred to
Chapter 2 and partly Chapter 7 of Wheeden and Zygmund [34], where the results may
not be proved in the whole generality. However, the extension is not difficult and is left
to the reader as an exercise.



M. RAIČ: STEIN’S METHOD 79

Definition B.3.1. Let −∞ < a ≤ b < ∞. Take functions f, g : [a, b] → R. The
Riemann–Stieltjes integral of f with respect to g is the limit of the Riemann–Stieltjes
sums

n∑
k=1

f(ξk)(xk − xk−1) ,

where a = x0 ≤ ξ1 ≤ x1 ≤ ξ2 ≤ · · · ≤ xn−1 ≤ ξn ≤ xn = b. More precisely, a number
J ∈ R is the Riemann–Stieltjes integral of f with respect to g if for each ε > 0, there
exists δ > 0, such that ∣∣∣∣ n∑

k=1

f(ξk)(xk − xk−1)− J
∣∣∣∣ < ε

for all x0, . . . , xn and ξ1, . . . , ξn being as above and such that xk − xk−1 < δ for all
k = 1, 2, . . . , n. Write

J =

∫ b

a

f dg .

The function f is called integrand, while the function g is called integrator.

Remark B.3.2. The Riemann–Stieltjes integral does not always exist. However, if it
exists, it is unique.

Definition B.3.3. An improper Riemann–Stieltjes integral of f with respect to g is
a limit of Riemann–Stieltjes integrals in the sense of Definition B.3.1 as one or both
endpoints approach their limits – the left endpoint from the right and the right endpoint
from the left. Thus, the integral can be improper at one or both endpoints. When the
integral is improper at both endpoints, the limit of the integral must exist and be the
same regardless how the endpoints approach their limits.

Denoting the limits of the endpoints by a and b (which can also be infinite), we also

denote the underlying improper integral by
∫ b
a
f dg, that is,∫ b

a

f dg = lim
a′↓a

∫ b

a′
f dg, lim

b′↑b

∫ b′

a

f dg or lim
a′↓a
b′↑b

∫ b′

a′
f dg .

Remark B.3.4. When an endpoint is infinite, it is clear that the integral should be
improper at that endpoint. However, when the endpoint is finite, we need to be careful as
the proper and the underlying improper integral can both exist, but they can be different.

Unless specified otherwise, we the Riemann–Stieltjes integral will be consider proper at a
certain endpoint if that endpoint is finite and both the integrand and the integrator are
defined there.

Proposition B.3.5 ([34], Theorem 2.16). The following is true for proper as well as
improper Lebesgue–Stieltjes integrals, provided that all improper integrals in the same
formula are considered in the same sense (e. g., all improper at the left endpoint):

(1) If c ∈ R and
∫ b
a
f dg exists, so do

∫ b
a
(cf) dg and

∫ b
a
f d(cg) and we have∫ b

a

(cf) dg =

∫ b

a

f d(cg) = c

∫ b

a

f dg .
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(2) If
∫ b
a
f1 dg and

∫ b
a
f2 dg exist, so does

∫ b
a
(f1 + f2) dg and we have∫ b

a

(f1 + f2) dg =

∫ b

a

f1 dg +

∫ b

a

f2 dg .

(3) If
∫ b
a
f dg1 and

∫ b
a
f dg2 exist, so does

∫ b
a
f d(g1 + g2) and we have∫ b

a

f d(g1 + g2) =

∫ b

a

f dg1 +

∫ b

a

f dg2 .

Proposition B.3.6 ([34], Theorem 2.21). If the proper integral
∫ b
a
f dg exists, then so

does
∫ b
a
g df and we have∫ b

a

f dg = f(b) g(b)− f(a) g(a)−
∫ b

a

g df .

For improper integrals, the statement remains true with f(a) g(a) and/or f(b) g(b) replaced

by the corresponding limits, which are assumed to exist. Thus, if the integral
∫ b
a
f dg exists

in the improper sense at the right endpoint and limb′↑b f(b′) g(b′) exists, then the integral∫ b
a
g df also exists in the improper sense at the right endpoint and we have∫ b

a

f dg = lim
b′↑b

f(b′) g(b′)− f(a) g(a)−
∫ b

a

g df .

Proposition B.3.7 ([34], Chapter 2, Exercise 16). The Riemann–Stieltjes integral∫ b
a
f dg exists if f is continuous and g is of bounded variation on [a, b].

Proposition B.3.8. If f has bounded variation and g is absolutely continuous on [a, b],
then ∫ b

a

f dg =

∫ b

a

f(x) g′(x) dx . (B.3.1)

Replacing the closed interval [a, b] with an open or half-open one (in this case, the endpoint
which is not included can be infinite), the result remains true in the improper sense: if
f has bounded total variation on all closed subintervals, g is absolutely continuous and
the right hand side exists as an improper integral, so does the left hand side and they
agree.

Proof. We shall only prove the result for closed intervals; the extension to open and
semi-open intervals is left to the reader as an exercise.

First, we show that both sides of (B.3.1) exist. The right hand side exists because f is
bounded (Remark B.2.2) and g′ ∈ L1([a, b]) (Theorem B.1.7). Next, since g is continuous

and f has bounded variation,
∫ b
a
g df exists by Proposition B.3.7. The integral

∫ b
a
f dg

then exists by Proposition B.3.6.
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To prove that both sides in (B.3.8) agree, take an array of points a = x
(n)
0 ≤ x

(n)
1 ≤ · · · ≤

x
(n)
n = b, n ∈ N, such that limn→∞max1≤k≤n(xk − xk−1) = 0, e. g., x

(n)
k = a + k

n
(b − a).

Write ∫ b

a

f(x) g(x) dx = An +Bn ,

where

An :=
n∑
k=1

f(xk)

∫ xk

xk−1

g′(x) dx =
n∑
k=1

f(xk)
(
g(xk)− g(xk−1)

)
,

Bn :=
n∑
k=1

∫ xk

xk−1

(
f(x)− f(xk)

)
g′(x) dx =

∫ b

a

δn(x) g′(x) dx

and δn(x) := f(x) − f(xk) for xk−1 < x ≤ xk and δn(a) := 0. Clearly, limn→∞An =∫ b
a
f dg. Next, since f has bounded total variation, it has at most countably many dis-

continuities. However, if f is continuous at x, we have limn→∞ δn(x) = 0. Thus, the latter
holds for almost all x ∈ [a, b]. Since f is bounded and g′ ∈ L1([a, b]), we can apply the
dominated convergence theorem to deduce that limn→∞Bn = 0, completing the proof.

B.4 Signed measures

Definition B.4.1. A signed measure on a measurable space (S,S ) is a function µ : S →
R, such that for any sequence A1, A2, . . . of pairwise disjoint sets, we have

µ

( ∞⋃
k=1

Ak

)
=
∞∑
k=1

µ(Ak) . (B.4.1)

Remark B.4.2. Here, we only deal with finite signed measures. In general, it is also
possible to consider signed measures with possible infinite values.

Remark B.4.3. As the sum in the right hand side of (B.4.1) is independent of the order
of the summands, the series must converge absolutely.

Definition B.4.4. The positive and negative part of a signed measure µ are set functions
µ+ and µ− defined by

µ+(A) := sup
{
µ(B) ; B ⊆ A,B ∈ S

}
, µ−(A) := sup

{
−µ(B) ; B ⊆ A,B ∈ S

}
.

(B.4.2)

The following result can be deduced from Corollary 4.1.6, Proposition 4.1.7 and Exercise 6
of Section 4.1 in Cohn [13]:

Proposition B.4.5. The functions µ+ and µ− defined as above are finite positive mea-
sures and we have µ = µ+ − µ−.

The representation µ = µ+ − µ− is called the Jordan decomposition of µ.
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Definition B.4.6. The variation of a signed measure µ defined on (S,S ) is the positive
measure |µ| := µ+ + µ−. The total variation of the µ is defined as ‖µ‖ := |µ|(S).

Definition B.4.7. For a function f ∈ L1(|µ|), define the Lebesgue integral of f with
respect to µ as ∫

f dµ :=

∫
f dµ+ −

∫
f dµ− ,

where µ = µ+ − µ− is called the Jordan decomposition of µ.

Remark B.4.8. We have

∣∣∣∣∫ f dµ

∣∣∣∣ ≤ ∫ |f | d|µ|.
Definition B.4.9. Let g : R→ R be a right-continuous function with bounded variation.
The Lebesgue–Stieltjes measure associated to g is the signed measure Λg determined by

Λg

(
(a, b]

)
= g(b)− g(a) (B.4.3)

for all a ≤ b.

Remark B.4.10. By Dynkin’s π–λ theorem (see, e. g., Theorem 1.6.2 of Cohn [13]),
(B.4.3) determines Λg uniquely.

Proposition B.4.11. Let g be a right-continuous function g with bounded variation.

(1) The Lebesgue–Stieltjes measure Λg exists and we have ‖Λg‖ = V (g).

(2) For a ≤ b and a continuous function f : [a, b] → R, the Riemann–Stieltjes integral∫ b
a
f dg exists and we have ∫

(a,b]

f dΛg =

∫ b

a

f dg .

Proof. By Theorem B.2.4, we may write g = h − k, where g and h are monotone
increasing functions which are left/right-continuous at each point where so is f . Moreover,
V (g) = V (h) +V (k). Thus, h and k are right-continuous. By Theorem 11.10 of Wheeden
and Zygmund [34], there exist Lebesgue–Stieltjes measures Λh and Λk, which are finite
positive measures. From (B.4.3) and Dynkin’s π–λ theorem, it follows that Λg = Λh−Λk.

By Proposition B.2.3, we have V (h) = limn→∞ h(n) − h(−n) = limn→∞ Λh

(
(−n, n]

)
=

Λh(R) and similarly V (k) = Λk(R). For each Borel set B ⊆ R, we have Λg(B) ≤ Λh(B)
and −Λg(B) ≤ Λk(B). Taking the supremum over B and recalling (B.4.2), we obtain
Λ+
g (R) ≤ Λh(R) = V (h) and Λ−g (R) ≤ Λk(R) = V (k). Therefore, ‖Λg‖ = Λ+

g (R) +
Λ−g (R) ≤ V (h) + V (k) = V (g).

For each ε > 0, there exists a sequence x0 ≤ x1 ≤ · · · ≤ xn, such that
∑n

k=1

∣∣g(xk) −
g(xk−1)

∣∣ > V (g) − ε. Now observe that
∑n

k=1

∣∣Λg

(
(xk−1, xk]

)∣∣ ≤ ∑n
k=1

∣∣Λ+
g

(
(xk−1, xk]

)
−

Λ−g
(
(xk−1, xk]

)∣∣ ≤∑n
k=1

(
Λ+
g

(
(xk−1, xk]

)
+Λ−g

(
(xk−1, xk]

))
= Λ+

g

(
(x0, xn]

)
+Λ−g

(
(x0, xn]

)
≤

Λ+
g (R) + Λ−g (R) = ‖Λg‖. Therefore, ‖Λg‖ > V (g) − ε for all ε > 0. As a result, we have
‖Λg‖ ≥ V (g). Combining with the preceding paragraph, we find that ‖Λg‖ = V (g),
proving part (1)
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By Proposition B.3.7, the Riemann–Stieltjes integrals
∫
f dh and

∫
f dk both exist. By

Proposition B.3.5, so does
∫
f dg and we have

∫
f dg =

∫
f dh−

∫
f dk. By Theorem 11.11

of Wheeden and Zygmund [34], we have
∫

(a,b]
f dΛh =

∫ b
a
f dh and

∫
(a,b]

f dΛk =
∫ b
a
f dk.

Since Λg = Λh − Λk, we conclude that
∫

(a,b]
f dΛg =

∫ b
a
f dg, proving part (2).



Appendix C

On the Mills ratio

C.1 Basic properties

Definition C.1.1. Let φ denote the standard Gaussian density on R, that is,

φ(w) =
1√
2π

e−
1
2
w2

(C.1.1)

and let Φ denote its cumulative distribution function:

Φ(w) :=

∫ w

−∞
φ(x) dx . (C.1.2)

The Mills ratio is the ratio between these two functions as follows:

ψ(w) :=
Φ(w)

φ(w)
= e

1
2
w2

∫ w

−∞
e−

1
2
x2 dx . (C.1.3)

Remark C.1.2. In the literature, the Mills ratio is often defined slightly differently, as
the function w 7→ ψ(−w) (in our notation). The benefit of that definition is that it gives
a ‘tame’ function for positive w. However, Definition (C.1.3) also has its benefits.

The Mills ratio is important because it can serve to express solutions to the Stein equation.
As one can easily check, the Mills ratio solves the equation

ψ′(w) = wψ(w) + 1 , (C.1.4)

which is a version of the Stein equation (3.2.1). Repeated differentiation gives further
derivatives, some of which are listed below:

ψ′′(w) = (w2 + 1)ψ(w) + w , (C.1.5)

ψ′′′(w) = (w3 + 3w)ψ(w) + w2 + 2 , (C.1.6)

ψ(4)(w) = (w4 + 6w2 + 3)ψ(w) + w3 + 5w . (C.1.7)

The derivatives of the Mills ratio also satisfy a recurrent formula as stated below:

84
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Proposition C.1.3. For all r ∈ N and all w ∈ R, we have

ψ(r+1)(w) = wψ(r)(w) + r ψ(r−1)(w) . (C.1.8)

Proof. For r = 1, the identity is immediate from (C.1.4) and (C.1.5). The induction
step from r to r + 1 can be performed by differentiating (C.1.8), leading to

ψ(r+2)(w) = wψ(r+1)(w) + (r + 1)ψ(r)(w) , (C.1.9)

which is exactly (C.1.8) with r + 1 in place of r.

Corollary C.1.4. The r-th derivative of the Mills ratio can be expressed as

ψ(r)(w) = Pr(w)ψ(w) +Qr(w) ,

where Pr is a polynomial of degree r and Qr is a polynomial of degree r − 1.

Proposition C.1.5. The Mills ratio and all its derivatives are strictly positive functions,
i. e., ψ(r)(w) > 0 for all r = 0, 1, 2, . . . and all w ∈ R.

Proof. Introducing a new variable t := w − x into the integral in (C.1.3), we obtain

ψ(w) = e
1
2
w2

∫ ∞
0

e−
1
2

(w−t)2 dt =

∫ ∞
0

etw−
1
2
t2 dt .

Repeated differentiation under the integral sign gives

ψ(r)(w) =

∫ ∞
0

tretw−
1
2
t2 dt > 0 (C.1.10)

(one can easily check that this works because all these integrals converge uniformly and
absolutely).

Combining (C.1.4) and (C.1.5) with Proposition C.1.5 (which, among others, implies that
ψ is strictly increasing), we obtain the following upper and lower bound on ψ for negative
arguments: for all w > 0, we have

w

w2 + 1
< ψ(−w) < min

{√
π

2
,

1

w

}
.

Moreover, derivatives of ψ can be bounded similarly.

Proposition C.1.6. For all r ∈ N0 and all w > 0, we have

ψ(r)(−w) <
r!

wr+1
. (C.1.11)

Proof. From (C.1.10), we obtain

ψ(r)(−w) =

∫ ∞
0

tre−tw−
1
2
t2 dt <

∫ ∞
0

twe−tw dt =
r!

wr+1
, (C.1.12)

completing the proof.
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C.2 Repeated integrals of the Gaussian density

There is a strong relationship between the derivatives of the Mills ratio and the repeated
integrals of the standard Gaussian density φ. Inductively, define

Φ0(w) := φ(w) , Φr+1(w) :=

∫ w

−∞
Φr(x) dx . (C.2.1)

Proposition C.2.1. The functions Φr are all well defined (i. e., all integrals in (C.2.1)
converge and we have

Φr+1(w) =
1

r!
φ(w)ψ(r)(w) (C.2.2)

for all r ∈ N0.

Proof. For r = 0, (C.2.2) is immediate from the definition of the Mills ratio. Now make
the induction step from r − 1 to r. Thus, assume that

Φr(w) =
1

(r − 1)!
φ(w)ψ(r−1)(w) . (C.2.3)

First, it follows from (C.1.12) that the function Φr is integrable on all intervals (−∞, w]
and that (C.2.2) holds in the limit as w → −∞. Therefore, it suffices to prove the
derivative of (C.2.2). By the induction hypothesis (C.2.3), we have

d

dw

[
Φr+1(w)− 1

r!
φ(w)ψ(r)(w)

]
= Φr(w)− 1

r!
φ′(w)ψ(r)(w)− 1

r!
φ(w)ψ(r+1)(w)

=
1

r!
φ(w)

[
r ψ(r−1)(w) + wψ(r)(w)− ψ(r+1)(w)

]
.

(C.2.4)

However, by the recurrent formula (C.1.8), the preceding expression equals zero. This
completes the proof.

Corollary C.2.2. For each r ∈ N, there exists Cr, such that

Φ(r)(−w) ≤ Cr e
− 1

2
w2

for all w ≥ 0.

Proof. By (C.2.2) and since ψ(r) is increasing by Proposition C.1.5, we can estimate

Φ(r) = 1
(r−1)!

φ(w)ψ(r−1)(−w) ≤ 1
(r−1)!

φ(w)ψ(r−1)(0) = ψ(r−1)(0)

(r−1)!
√

2π
e−

1
2
w2

.

Proposition C.2.3. For all r ∈ N0 and all w ∈ R, we have

Φr(−w)ψ(r)(w) + Φr(w)ψ(r)(−w) = 1 . (C.2.5)

Proof. For r = 0, (C.2.5) reduces to the obvious identity Φ(w)+Φ(−w) = 1. For r ∈ N,
we apply Proposition C.2.1, which reduces (C.2.5) to

Jr(w) := φ(w)
[
ψ(r−1)(−w)ψ(r)(w) + ψ(r−1)(w)ψ(r)(−w)

]
= (r − 1)! , (C.2.6)
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and use induction over r. For r = 1, (C.1.4) implies

J1(w) = φ(w)
[
ψ(−w)ψ′(w) + ψ(w)ψ′(−w)

]
=

= φ(w)
[
ψ(−w)

(
wψ(w) + 1

)
+ ψ(w)

(
−wψ(−w) + 1

)]
=

= φ(w)
(
ψ(−w) + ψ(w)

)
=

= 1 .

(C.2.7)

Now perform the induction step from r to r + 1. This time, application of the recurrent
formula (C.1.8) (instead of (C.1.4)) gives

Jr+1(w) = φ(w)
[
ψ(r)(−w)ψ(r+1)(w) + ψ(r)(w)ψ(r+1)(−w)

]
=

= φ(w)
[
ψ(r)(−w)

(
wψ(r)(w) + r ψ(r−1)(w)

)
+

+ ψ(r)(w)
(
−wψ(r)(−w) + r ψ(r−1)(−w)

)]
=

= r Jr(w) =

= r! .

(C.2.8)

This completes the proof.
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