
On the complexity of the exact

weighted independent set problem

Martin Milanič
∗

Jérôme Monnot
†‡

Abstract

We introduce and study the exact weighted independent set problem: Given a vertex-
weighted graph, determine whether it contains an independent set of a given weight. This
problem is related to the exact perfect matching problem. We determine the complex-
ity of the problem and the variant of it in which the independent set is required to be a
maximum one, for several graph classes. More specifically, we show that these problems
are strongly NP-complete for several subclasses of bipartite graphs, including the class
of bipartite graphs of maximum degree 3. On the positive side, we identify graph classes
where these problems are solvable in pseudo-polynomial time. We complement the dy-
namic programming solutions by showing that modular decomposition can be applied to
a suitable generalization of these “exact” problems.

Keywords: exact weighted independent set, NP-completeness, pseudo-polynomial
algorithm, modular decomposition.

1 Introduction

The exact perfect matching problem is the problem of determining whether a given edge-
weighted graph contains a perfect matching of a given weight. This problem finds applica-
tions in such diverse areas as bus-driver scheduling, statistical mechanics [26], DNA sequenc-
ing [7], and robust assignment problems [17]. In 1982, Papadimitriou and Yannakakis showed
that the problem—as well as many other exact versions of polynomially solvable optimization
problems—is NP-complete when the weights are encoded in binary [32]. The problem is solv-
able in polynomial time in some special cases such as planar graphs (and more generally, for
graphs that have a Pfaffian orientation, provided one is given) [5], and complete or complete
bipartite graphs with 0-1 weights [25], and admits a randomized pseudo-polynomial-time algo-
rithm [30]. However, the deterministic complexity of the exact perfect matching problem with
unary weights remains unsettled, even for bipartite graphs. Papadimitriou and Yannakakis
conjectured that the problem is NP-complete [32].

Motivated by this long-standing open problem, we introduce and study the exact weighted
independent set problem and a restricted version of it, both closely related to the exact perfect
matching problem. An independent set (also called stable set) in a graph is a set of pairwise
non-adjacent vertices. The weighted independent set problem (WIS) asks for an independent

∗FAMNIT and PINT, University of Primorska, Koper, Slovenia, martin.milanic@upr.si
†LAMSADE, Université Paris-Dauphine, Place du Maréchal De Lattre de Tassigny, F-75775 Paris Cedex

16, France, monnot@lamsade.dauphine.fr
‡Part of this work was carried out while the first author was with the LAMSADE on a visiting researcher

position supported by a common CNRS-NSF research project “Algorithmic Decision Theory” between the LAM-
SADE and the DIMACS. Financial support of DIMACS, as well as the hospitality of members of LAMSADE
are gratefully acknowledged.

1

set of maximum weight in a given vertex-weighted graph (G,w). If all weights are the same,
we speak about the independent set problem (IS), which consists in finding an independent
set of maximum cardinality. The optimal values of these problems are denoted by αw(G) and
α(G), respectively.

The exact weighted independent set problem (EWIS) consists of determining whether a
given vertex-weighted graph (G,w) with G = (V,E) and w : V → Z contains an independent
set whose total weight (that is, the sum of the weights of its members) equals a given integer M .
The exact weighted maximum independent set problem (EWISα) is the restriction of the EWIS

problem where we require the independent set to be one of the maximum cardinality. Thus,
given a vertex-weighted graph (G,w) and an integer M , EWISα asks about the existence of
an independent set I of G with |I| = α(G) and w(I) = M .

The connection between the exact perfect matching problem and the exact weighted inde-
pendent set problem can be explained through line graphs. The line graph L(G) of a graph
G = (V,E) is the graph whose vertex set is E, and whose two vertices are adjacent if and
only if they share a common vertex as edges of G. Clearly, there is a one-to-one correspon-
dence between the matchings of a graph and the independent sets of its line graph. Thus, the
exact matching problem is precisely the exact weighted independent set problem, restricted
to the class of line graphs. Similarly, under the (polynomially verifiable) assumption that
the input graph has a perfect matching, the exact perfect matching problem is precisely the
exact weighted maximum independent set problem, restricted to the class of the line graphs
of graphs with a perfect matching.

Our contributions. We determine the complexity status of EWIS and EWISα for several
graph classes. On the one hand, we present the first nontrivial strong NP-completeness result
for these problems. On the other hand, we identify several classes of graphs where EWIS and
EWISα can be solved in pseudo-polynomial time. While most of the solutions are based on a
dynamic programming approach, we also show that modular decomposition can be applied to
a suitable generalization of the EWIS problem.

The paper is structured as follows. After giving the necessary definitions and notations, we
continue the introductory discussion in Section 2. We also present some relations between the
complexities of the problems WIS, EWIS and EWISα. Section 3 is devoted to the strong NP-
completeness results. In Section 4, pseudo-polynomial-time solutions to the exact weighted
independent set problem are discussed. We conclude the paper with a short discussion in
Section 5.

Basic definitions and notations. All graphs considered are finite, simple and undirected.
A matching in a graph is a set of pairwise disjoint edges. A matching is perfect if every vertex
of the graph is contained in some edge from the matching. Unless otherwise stated, n and m
will denote the number of vertices and edges, respectively, of the graph considered. As usual,
Pn and Cn denote the chordless path and the chordless cycle on n vertices. By Kn we denote
the complete graph on n vertices, and by Ks,t the complete bipartite graph with parts of size
s and t. A claw is the graph K1,3. A net is the graph obtained from a triangle by attaching
one pendant edge to each vertex.

For a graph G, we will denote by V (G) and E(G) the vertex-set and the edge-set of G,
respectively. Individual edges will be denoted by square brackets: an edge with endpoints u and
v will be denoted by [u, v]. For a vertex x in a graph G, we denote by NG(x) the neighborhood
of x in G, i.e., the set of vertices adjacent to x, and by NG[x] the closed neighborhood of x,
i.e., the set NG(x) ∪ {x}. We will write N(x) and N [x] instead of NG(x) and NG[x] if no
confusion can arise. For a graph G, we denote by co-G (also G) the edge-complement of G.
By component we will always mean a connected component. For graph-theoretical terms not

2

defined here, the reader is referred to Berge’s book [6].

The triple (G,w,M) will always represent an instance of EWIS (or EWISα), i.e., G =
(V,E) is a graph, w : V → Z are vertex weights, and M ∈ Z is the target weight. If H is
an induced subgraph of G, we will also consider triples of the form (H,w,M) as instances
of EWIS, with w representing the restriction of the weights to V (H). We will denote by
EWIS(G,w,M) the solution to the instance (G,w,M) of EWIS, that is, EWIS(G,w,M)
is yes if there is an independent set I in G with w(I) = M , and no otherwise. Similarly,
EWISα(G,w,M) is yes if there is a maximum independent set I in G with w(I) = M , and no
otherwise. Finally, for a subset of vertices V ′ ⊆ V , we let w(V ′) =

∑

v∈V ′ w(v). For a positive
integer k, we write [k] for the set {1, . . . , k}.

2 Preliminary Observations

The exact weighted independent set problem is (weakly) NP-complete for any class of graphs
containing {Kn : n ≥ 0}. There is a direct equivalence between the exact weighted independent
set problem on {nK1 : n ≥ 0} and the NP-complete subset sum problem [20]: Given n integers
a1, . . . , an and an integer b, determine whether there is a subset J ⊆ [n] such that

∑

j∈J aj = b.
Therefore, for a given class of graphs G, the question of interest is whether the EWIS problem
is strongly NP-complete for graphs in G, or is it solvable in pseudo-polynomial time.

By the use of simple reductions, it is easy to see that it suffices to consider instances
(G,w,M) of EWIS such that 1 ≤ w(v) ≤M , for all v ∈ V (G), as well as M ≤ w(V (G)). The
same assumption can also be made for the instances (G,w,M) of the restricted counterpart
EWISα.

We now discuss some relations between the complexities of the problems WIS, EWIS and
EWISα, when restricted to particular graph classes.

Lemma 1. Let G be a class of graphs. The following statements are true.
(i) If EWISα is solvable in pseudo-polynomial time for graphs in G, then WIS is solvable in
pseudo-polynomial time for graphs in G.
(ii) If EWIS is solvable in pseudo-polynomial time for graphs in G, then EWISα is solvable
in pseudo-polynomial time for graphs in G.
(iii) Let G′ = {G′ : G ∈ G} where G′ = (V ′, E′) is the graph, obtained from a graph
G = (V,E) ∈ G, by adding pendant vertices, as follows: V ′ = V ∪ {v′ : v ∈ V }, E′ =
E ∪ {[v, v′] : v ∈ V }. If EWISα is solvable in pseudo-polynomial time for graphs in G′, then
EWIS is solvable in pseudo-polynomial time for graphs in G.

Proof. (i) Let (G,w, k) be an instance of the decision version of the weighted independent set
problem. As we can assume positive weights, G contains an independent set of total weight
at least k if and only if G contains a maximum independent set of total weight at least k. By
testing values for M from w(V) down to k and using an algorithm for EWISα on the instance
(G,w,M), we can decide whether G contains a maximum independent set of total weight at
least k.

(ii) Let (G,w,M) be an instance of the EWISα problem. It is easy to see that the following
algorithm solves EWISα.
Step 1. Compute α(G), which is equal to the maximum k ∈ [n] such that the solution to
EWIS(G,1, k) is yes, where 1 denotes the unit vertex weights.
Step 2. Let N = w(V) + 1. For every vertex v ∈ V (G), let w′(v) = w(v) + N . Let M ′ =
M + α(G)N . Then it is easy to verify that EWISα(G,w,M) = EWIS(G,w′,M ′).

3

(iii) Let (G,w,M) with G = (V,E) ∈ G be an instance of EWIS. Let G′ be the graph, defined
as in the lemma. Let n = |V | and let w′(v) = (n+1)w(v) for all v ∈ V and w′(v) = 1 for v ∈ V ′.
Then, it is easy to verify that the solution to EWIS(G,w,M) is yes if and only if the solution
to EWISα(G′, w′,M ′) is yes for some value M ′ in the set {(n+1)M, . . . , (n+1)M+n−1}.

The EWIS problem is clearly in NP, and so is EWISα for any class of graphs G where IS

is polynomially solvable. Therefore, Lemma 1 implies the following result.

Corollary 2. Let G be a class of graphs. The following statements are true.
(i) If WIS is strongly NP-complete for graphs in G, then EWISα is strongly NP-hard for
graphs in G. If, in addition, IS is polynomial for graphs in G, then EWISα is strongly NP-
complete for graphs in G.
(ii) If EWISα is strongly NP-hard for graphs in G, then EWIS is strongly NP-complete for
graphs in G.
(iii) Let G′ be as in Lemma 1. If EWIS is strongly NP-complete for graphs in G, then EWISα

is strongly NP-hard for graphs in G′. If, in addition, IS is polynomial for graphs in G′, then
EWISα is strongly NP-complete for graphs in G′.

We can thus safely focus in determining the complexity of the EWIS problem for those
graph classes where the WIS problem is solvable in pseudo-polynomial time. Moreover, com-
bining parts (ii) and (iii) of the above corollary shows that when G ∈ {forests, bipartite
graphs, chordal graphs}, the problems EWIS and EWISα are equivalent (in the sense that,
when restricted to the graphs in G, they are either both solvable in pseudo-polynomial time,
or they are both strongly NP-complete). Recall that a graph G is a forest if it is acyclic,
bipartite if any cycle of G has even length, and chordal if any cycle of G with size at least 4
has a chord (i.e., an edge connecting two non-consecutive vertices of the cycle).

We conclude this section by showing that a similar equivalence remains valid for the class
of line graphs. More precisely, if L, L(Bip), L(K2n) and L(Kn,n) denote the classes of line
graphs, line graphs of bipartite graphs, line graphs of complete graphs with an even number
of vertices, and line graphs of complete balanced bipartite graphs, respectively, we have the
following result.

Lemma 3. EWIS is strongly NP-complete for graphs in L (resp., L(Bip)) if and only if
EWISα is strongly NP-complete for graphs in L(K2n) (resp., L(Kn,n)).

Proof. The backward implication is given by part (ii) of Lemma 1. The forward implication
follows from a reduction of the exact matching problem to the exact perfect matching problem
which we show now. Given an instance G = (V,E) with edge weights w and a target M for the
exact matching problem, construct an instance (Kn′ , w′,M ′) for the exact perfect matching
problem as follows. If n = |V | is odd, we add a new vertex and we complete the graph G. For
an edge e of G, let w′(e) = Nw(e) where N = w(E) + 1, for an edge e /∈ E let w′(e) = 1. The
transformation is clearly polynomial, and G has a matching of weight M if and only if Kn′

has a perfect matching of weight NM + k for some value of k ∈ {0, . . . , n− 1}. Also, it is easy
to see that in the case of bipartite graphs G = (L,R;E) with |L| ≤ |R|, we can add |R \ L|
vertices to L to balance the bipartition.

3 Hardness Results

The weighted independent set problem is solvable in polynomial time for bipartite graphs by
network flow techniques. However, as we show in this section, the exact versions of the problem
turn out to be strongly NP-complete for several subclasses of bipartite graphs, including the

4

class of bipartite graphs of maximum degree 3. By part (ii) of Lemma 1, it suffices to show
the hardness of the restricted version EWISα.

3.1 EWISα in Bipartite Graphs

A bipartite graph is a graph G = (V,E) whose vertex set admits a partition V = L ∪ R into
the left set L and the right set R such that every edge of G links a vertex of L to a vertex
of R. The strong NP-completeness of EWIS in bipartite graphs is straightforward since the
balanced biclique problem (also called balanced complete bipartite subgraph) is NP-complete
[20, 16]. This problem consists in deciding, given a bipartite graph G = (L,R;E) and an
integer k, if there exist L′ ⊆ L and R′ ⊆ R with |L′| = |R′| = k such that the subgraph
induced by L′ ∪ R′ is a complete bipartite subgraph (also called biclique of size k). In [16], a
variation of this latter problem is introduced where we must have |L′| = a and |R′| = b (called
the biclique problem). From an instance (G, k) of balanced biclique, we introduce weight 1 on
each vertex of L, weight B = max{|L|, |R|} + 1 on each vertex of R, and we set M = k +Bk.
It is clear that there exist an independent set in (L,R; (L × R) \ E) of weight M if and only
if there exists a balanced biclique in (L,R;E) of size k.

This observation is strengthened in two ways in the following theorem.

Theorem 4. EWISα is strongly NP-complete in bipartite graphs with maximum degree 3.

Proof. The reduction is done from the decision clique set problem in regular graph which is
known to be NP-complete, [20]. A clique V ∗ is a subset of vertices of G such that the subgraph
induced by V ∗ is complete. Let G = (V,E) be a ∆-regular graph of n vertices and let k be
an integer. Wlog., assume that ∆ < n − 1 and k > 0 (thus, we can assume that k < n). We
build the instance I = (G′, w) of EWIS where G′ = (L,R;E′) is a bipartite graph as follows:

• For each vertex v ∈ V , we construct a gadget H(v) which is a cycle of length 2∆.
Thus, it is a bipartite graph where the left set is Lv = {l1,v , . . . , l∆,v} and the right
set is Rv = {r1,v , . . . , r∆,v}. The weights are w(li,v) = 1 and w(ri,v) = n∆(2+n∆

2) for
i = 1, . . . ,∆. The gadget H(v) is illustrated with Figure 1.

• For each edge e ∈ E, we construct a gadget H(e) which is also a cycle of length 2n∆.
Thus, it is a bipartite graph where the left set is Le = {l1,e, . . . , ln∆,e} and the right
set is Re = {r1,e, . . . , rn∆,e}. The weights are w(li,e) = 1 and w(ri,e) = n∆(2+n∆

2) for
i = 1, . . . , n∆. The gadget H(e) is illustrated with Figure 2.

• We interconnect these gadgets by applying iteratively the following procedure. For each
edge e = [u, v] ∈ E, we add one edge [ri,u, l1,e] between gadgets H(u), H(e) and one edge
[rj,v, ln∆

2
+1,e] between gadgets H(v), H(e) such that the vertices ri,u, rj,v have degree 3.

It is clear that G′ is bipartite and the weights are polynomially bounded. Moreover, since
G is a ∆-regular graph, we deduce that only the vertices of sets Rv, for v ∈ V and l1,e, ln∆

2
+1,e

for e ∈ E have degree 3 in G′. All the others have degree 2.

We claim that there exist a clique V ∗ of G with a size at least k if and only if there exist
an independent set S of G′ with weight exactly

B = ∆k + n∆
k(k − 1)

2
+ n∆(

2 + n∆

2
)

(

(n− k)∆ + (
n∆

2
−
k(k − 1)

2
)n∆

)

.

5

r∆,v

v

l1,v

r1,v

l2,v

r2,v

l∆,v

Figure 1: The gadget H(v).

l n∆
2

+1,e

e

rn∆,e

r1,e

l2,e

l1,e

ln∆,e

l n∆
2

,e

r n∆
2

,e

r n∆
2

+1,e

Figure 2: The gadget H(e).

Let V ′ be a clique of G with | V ′ |≥ k and consider a subclique V ∗ ⊆ V ′ of size exactly
k. We set S = SL ∪ SR with SL = ∪v∈V ∗Lv ∪e∈E(V ∗) Le and SR = ∪v∈V \V ∗Rv ∪e∈E\E(V ∗) Re.
One can easily verifies that w(S) = B and that S is an independent set of G′. Indeed, let
us assume the reverse; thus, there exist ri,v ∈ S (and thus Rv ⊆ S), lj,e ∈ S (with j = 1 or
j = n∆

2 + 1) and [ri,v, lj,e] ∈ E′. By construction of S, we deduce that e = [u, v] ∈ E(V ∗) and
then Lv ⊆ S, contradiction.

Conversely, let S be an independent set of G′ with w(S) = B. We prove that S is a
maximum independent set of G′. Firstly, |S| ≤ |L| = |R| = n∆(n∆+2

2) since G′ has a perfect
matching (each gadget H(v) and H(e) contains a perfect matching). Secondly, since w(v) = 1
for v ∈ L and w(v) = |L| = |R| = n∆(n∆+2

2) for v ∈ R, there is no possible compensation
between S ∩ L and S ∩R. So, we obtain:

|S ∩ L| = ∆k + n∆
k(k − 1)

2
(1)

and

6

|S ∩R| = (n− k)∆ + (
n∆

2
−
k(k − 1)

2
)n∆ (2)

Add inequality (1) to (2), the result follows. This implies in particular that for any vertex
v ∈ V , either Lv or Rv is a subset of S. Moreover, the same property holds for any e ∈ E (i.e.,
either Le or Re is a subset of S).

Now, we prove that there are exactly k(k−1
2) gadgets H(e) with Le ⊆ S. Assume that

they are strictly less than it; then, |S ∩L| ≤ ∆n+ n∆(k(k−1)
2 − 1). Combining this inequality

with equality (1), we deduce that k ≤ 0, contradiction. Now, assume that they are strictly
more than it; using the same arguments that previously on S ∩ R, we deduce this time that
|S ∩ R| ≤ (n∆

2 − k(k−1)
2)n∆. Combining this with equality (2), we obtain k ≥ n, which is

impossible.

Thus, by construction: for any edge e = [u, v] ∈ E with Le ⊆ S, we must have Lu ⊆ S and
Lv ⊆ S. So, if we set V ∗ = {v ∈ V : Lv ⊆ S}, we deduce from previously |V ∗| ≥ k. Let us
prove that |V ∗| = k and we will have necessarily V ∗ is a clique of G. Assume that |V ∗| ≥ k+1;

we obtain that |S ∩R| ≤ (n− k− 1)∆ + (n∆
2 − k(k−1)

2)n∆. But, using equality (2), we obtain
another contradiction (i.e., ∆ ≤ 0). The proof is complete.

As a corollary of Theorem 4, we can derive that the biclique problem remains NP-complete
when the minimum degree of G = (L,R;E) is n − 3 where |L| = |R| = n. In this case, we
replace any gadget H(e) of Theorem 4 by a cycle of length 2n∆ and we delete edges [li,u, r1,e]
and [lj,v, r2,e].

We also remark that Theorem 4 implies the strong NP-completeness of EWISα for perfect
graphs, a well-known class of graphs where WIS is solvable in polynomial time.

3.2 A More General Hardness Result

We shall now strengthen the result of Theorem 3.1 to a more general setting, for hereditary
subclasses of bipartite graphs in which no vertex degree exceeds 3. (A class of graphs is
hereditary if it is closed under vertex deletion.) To this end, we first introduce some notations.
We will denote the class of graphs containing no induced subgraphs from a set F by Free(F).
Any graph in Free(F) will be called F-free. Our hardness results will be expressed in terms
of a parameter related to the set of forbidden induced subgraphs F .

c c c ` ` ` c c

c

c

c

c

1 2 i

Figure 3: The graph Hi

For i ≥ 1, let Hi denote the graph depicted on Figure 3 and for i ≥ 3, let Ci denote the
chordless cycle of length i. We associate to every graph G a parameter κ(G). If G has a vertex
of degree 4 or more, we define κ(G) to be 0. Otherwise, let κ(G) denote the minimum value
of k ≥ 3 such that G contains an induced copy of either Ck or Hk (or ∞ if no such k exists).
Also, for a (possibly infinite) set of graphs F , we define κ(F) = sup{κ(G) : G ∈ F}.

With these definitions in mind, we can derive the following hardness result.

7

Theorem 5. Let F be a set of graphs and let G be the set of F-free bipartite graphs of maximum
degree at most 3. If κ(F) <∞, then EWISα is strongly NP-complete in the class G.

Proof. The problem is clearly in NP. We show completeness in two steps. First, for k ≥ 3, let
Sk be the class of all bipartite (C3, . . . , Ck,H1, . . . ,Hk)-free graphs of vertex degree at most 3,
and let us show that for any fixed k, the problem is strongly NP-complete for graphs in Sk.
Let (G,w,M) be an instance of EWISα where G is a bipartite graph of maximum degree at
most 3.

We can transform the graph G in polynomial time to a vertex-weighted graph G′, as
follows. Let k′ = ⌈k

2⌉. We replace each edge e of G by a path P (e) on 2k′ + 2 vertices. Let
N = w(V) + 1. We set the weights w′ of the endpoints of P (e) equal to the weights of the
corresponding endpoints of e, while each internal vertex of P (e) gets weight N . It is easy to
verify that G′ belongs to Sk.

We claim that the answer to EWISα(G,w,M) is yes if and only if the answer to
EWISα(G′, w′,M +mk′N) is yes, where m = |E(G)|.

One direction is immediate, as each maximum independent set of G can be extended to
a maximum independent set of G′, by simply adding k′ internal vertices of each newly added
path. Doing so, the weight increases by mk′N .

Suppose now that the answer to EWISα(G′, w′,M +mk′N) is yes. Let I ′ be a maximum
independent set of G′ of weight M +mk′N . Since I ′ is independent, it can contain at most
k′ internal vertices of each newly added path. Therefore, for each e ∈ E(G), the set I ′

must contain exactly k′ internal vertices of P (e) – otherwise its weight would be at most
W + (mk′ − 1)N , contradicting our choice of N .

Let I denote the set, obtained from I ′ by deleting the internal vertices of newly added
paths. Then, I is an independent set of G. Indeed, if e = [u, v] ∈ E(G) for some u, v ∈ I, then
I ′ can contain at most k′ − 1 internal vertices of P (e), contradicting the above observation.
Also, it is easy to see that I is a maximum independent set of G. Finally, as the weight of I
is exactly M , we conclude that the answer to EWISα(G,w,M) is yes.

This shows that EWISα is strongly NP-complete in the class Sk. To prove strong NP-
completeness of the problem in the class G, we now show that the class G contains all graphs
in Sk, for k := max{3, κ(F)}. Let G be a graph from Sk. Assume that G does not belong
to G. Then G contains a graph A ∈ F as an induced subgraph. From the choice of G we know
that A belongs to Sk, but then k < κ(A) ≤ κ(F) ≤ k, a contradiction. Therefore, G ∈ G and
the theorem is proved.

4 Polynomial Results

In this section, we identify several graph classes where EWIS and EWISα can be solved in
pseudo-polynomial time. By part (ii) of Lemma 1, it suffices to develop pseudo-polynomial
solutions for EWIS. For this purpose, the following version of the problem turns out to be most
appropriate: Given a vertex-weighted graph (G,w) and a target M , compute the solutions to
all M instances of EWIS with varying target k ∈ [M]. That is, the solution to the problem
is given by the vector (EWIS(G,w, k) : k ∈ [M]) ∈ {yes , no}[M].

First, we show that without loss of generality, we may restrict our attention to connected
graphs. To do so, we consider the following generalization of the subset sum problem, a typical
example of an NP-complete problem that can be solved in pseudo-polynomial time by dynamic
programming.

GENERALIZED SUBSET SUM (GSS)
Instance: Nonempty sets of positive integers A1, . . . , An and a positive integer b.

8

Question: Is there a nonempty subset S of [n] and a mapping a : S → ∪i∈SAi such that
a(i) ∈ Ai for all i ∈ S, and

∑

i∈S a(i) = b?

It is straightforward to extend the dynamic programming solution for subset sum to one
for generalized subset sum (a proof is given in the appendix).

Lemma 6. There is an O(nb2) dynamic programming algorithm that computes the set B of all
values b′ ∈ [b] such that there is a set S and a mapping a (as above) such that

∑

i∈S a(i) = b′.

It now follows immediately that in order to solve EWIS, it suffices to solve the problem
for connected graphs.

Corollary 7. Let (G,w,M) be an instance of EWIS, and let C1, . . . , Cr be the connected
components of G. Suppose that for each i ∈ [r], the set of solutions (EWIS(Ci, w, k) : k ∈ [M])
for Ci is given. Then, we can compute the set of solutions (EWIS(G,w, k) : k ∈ [M]) for G
in time O(rM2).

Proof. It suffices to observe that for every k ∈ [M], the solution to EWIS(G,w, k) is yes if
and only if the solution to the GSS problem on the instance (A1, . . . , Ar; k) is yes, where Ai

denotes the set of all values k′ ∈ [M] such that the solution to EWIS(Ci, w, k
′) is yes.

In view of the connection between the weighted independent set problem and its exact
counterpart (cf. part (i) of Lemma 1), the following question arises naturally: Which of the
polynomial-time solutions for the WIS problem on restricted input graphs can be extended
to solutions for the EWIS problem? Most commonly used approaches to the WIS problem in
particular graph classes can be summarized as follows:

• Dynamic programming. Typically, solutions based on dynamic programming rely on
structural properties of graphs in a given class. Example include interval graphs [34],
AT-free graphs [12], distance-hereditary graphs [4, 14], circle graphs [36], graphs of tree-
width at most k [2], graphs of clique-width at most k [13], etc. (We do not define these
graph classes here; the interested reader is referred to the comprehensive survey [11].)

• Decomposition by clique separators [37, 39]. This approach can be used for ex-
ample to develop a simple solution to the WIS problem in chordal graphs.

• Enumeration of all maximal independent sets [38]. This approach becomes feasi-
ble whenever the graphs in a given class contain only polynomially many maximal inde-
pendent sets. This is the case for instance formK2-free graphs (for everym ≥ 1) [1, 3, 33].

• Modular decomposition. Besides other results [9], this approach has been used to
solve the WIS problem in certain subclasses of P5-free and fork-free graphs [10].

It turns out that almost all of these solutions to the WIS problem can be extended to solu-
tions for the EWIS problem, the only exception being the decomposition by clique separators.
Nevertheless, for chordal graphs a different solution for the EWIS problem can be developed
based on their clique tree representation and using a set of identities developed by Okamoto
et al. in [31].

In the following theorem, we summarize our results about pseudo-polynomial solutions for
the problem of finding independent sets of given weight. Most proofs and algorithms can be
found in the appendix.

Theorem 8. The problems EWIS and EWISα can be solved in pseudo-polynomial time in
each of the following graph classes: interval graphs, chordal graphs, AT-free graphs, (claw ,net)-
free graphs, distance-hereditary graphs, circle graphs, mK2-free graphs, graphs of tree-width at
most k, and graphs of clique-width at most k.

9

Remark. For graphs of clique-width at most k, an alternative to a direct solution to the EWIS
problem can be obtained by adapting the general result of Courcelle et al. [13] which shows
that every optimization problem expressible in monadic second order logic with quantification
over the vertices and vertex sets can be solved in linear time on graphs of bounded clique-
width. Indeed, it is not hard to adapt the notions from [13] to the “exact” setting and to
modify the proofs therein to show that, roughly speaking, every “exact” problem expressible in
monadic second order logic with quantification over the vertices and vertex sets can be solved
in pseudo-polynomial time for graphs of bounded clique-width.

In the remainder of this section, we recall the notion of the modular decomposition of a
graph and show how it can be applied to the EWIS problem. The idea of modular decompo-
sition has been first described in the 1960s by Gallai [19], and also appeared in the literature
under various other names such as prime tree decomposition [18], X-join decomposition [22],
or substitution decomposition [28]. This technique allows one to reduce many graph prob-
lems from arbitrary graphs to the so-called prime graphs. For an overview of the applications
of modular decomposition to combinatorial optimization and other problems, together with
a general algebraic decomposition theory, we refer the reader to the paper of Möhring and
Rademacher [29].

Let G = (V,E) be a graph, U a subset of V and x a vertex of G outside U . We say that x
distinguishes U if x has both a neighbor and a non-neighbor in U . A subset U ⊂ V (G) is called
a module in G if it is indistinguishable for the vertices outside U . A module U is nontrivial if
1 < |U | < |V |, otherwise it is trivial. A prime graph is one with only trivial modules.

Modular decomposition provides a reduction of many graph problems from a graph G
to the graph G0 obtained from G by contracting each maximal module to a single ver-
tex. We formally describe this reduction for the EWIS problem in the recursive procedure
Modular ewis(G,W,M) below. It turns out that in order to apply this decomposition to
the EWIS problem, we need to relax the problem so that each vertex of the input graph is
equipped with a nonempty set of possible weights (instead of just a single one). We name this
generalized problem GEWIS. When all sets are singletons, the problem coincides with the
original EWIS problem.

GENERALIZED EXACT WEIGHTED INDEPENDENT SET (GEWIS)
Instance: An ordered triple (G,W,M), where G = (V,E) is a graph, M is a positive integer
and W = (Wv : v ∈ V) with Wv ⊆ [M] for all v ∈ V is the collection of possible weights for
each vertex of G.
Question: Is there an independent set I of G and a mapping w : I → [M] such that w(v) ∈Wv

for all v ∈ I, and
∑

v∈I w(v) = M?

Algorithm Modular ewis(G,W,M)

Input: An ordered triple (G,W,M), where G = (V,E) is a graph, M is a positive integer
and W = (Wv : v ∈ V) with Wv ⊆ [M] for all v ∈ V is the collection of possible weights for
each vertex of G.

Output: (EWIS(G,W, k) : k ∈ [M])

1. If |V | = 1, say V = {v}, set, for each k ∈ [M], EWIS(G,W, k) =

{

yes , if k ∈Wv;
no, otherwise

and go to step 7.

2. If G is disconnected, partition it into components M1, . . . ,Mr, and go to step 5.

3. If co-G is disconnected, partition G into co-components M1, . . . ,Mr, and go to step 5.

4. If G and co-G are connected, partition G into maximal modules M1, . . . ,Mr.

10

5. For all j ∈ [r], let (EWIS(G[Mj],W, k) : k ∈ [M]) = Modular ewis(G[Mj],W,M) .
Construct a graph G0 from G by contracting each Mj (for j ∈ [r]) to a single vertex, and
assign to that vertex the set of weights WMj

= {k ∈ [M] : EWIS(G[Mj],W, k) = yes} .

6. For each k ∈ [M], let EWIS(G,W, k) = EWIS(G0, (WMj
: j ∈ [r]), k).

7. Return (EWIS(G,W, k) : k ∈ [M]) and stop.

For each input graph, at most one of the steps 2-4 is performed. (At most one among {G,
co-G} is disconnected; moreover, if G and co-G are both connected, then the maximal modules
of G are pairwise disjoint.) Observe that the graph G0 constructed in step 5 of the algorithm
is either an edgeless graph, a complete graph, or a prime graph. Therefore, the modular
decomposition approach reduces the problem from a graph to its prime induced subgraphs.

The correctness of the procedure is straightforward: every independent set I of G consists
of pairwise disjoint independent sets in the subgraphs of G induced by M1, . . . ,Mr; moreover,
those Mi’s that contain a vertex from I form an independent set in G0. And conversely, for
every independent set I0 in G0 and every choice of independent sets {Ij : j ∈ I0} with Ij
independent in G[Mj], the set ∪j∈[r]Ij is independent in G. The following theorem answers
the question on the complexity of such a reduction.

Theorem 9. Let G be a class of graphs and G∗ the class of all prime induced subgraphs of the
graphs in G. If there is a p ≥ 1 and a q ≥ 2 such that GEWIS can be solved for graphs in G∗

in time O(M qnp), then GEWIS can be solved for graphs in G in time O(M qnp +m).

We omit the proof as it is a straightforward adaptation of the proof of the analogous result
for the WIS problem (see e.g. [27]).

Theorem 9 leads to pseudo-polynomial-time solutions to EWIS in several subclasses of
P5-free and fork-free graphs. The results are summarized in the following theorem; all graphs
mentioned in the theorem or its proof (see appendix) are depicted in Figure 4.

s s s s s

P5

s s s s

s

TT��
Q

QQ
�

��

gem

s s s s

s

co-gem

s

s s

sQQ
��%

%��
QQ

s s

double-gem

s

s s

sQQ
��

��
QQ

s s

co-domino

s s s

s

s

��
QQ

co-P

s s s s

s

TT��

bull

s s s

s

s

��
QQ

fork

Figure 4: Some 5- and 6-vertex graphs

Theorem 10. EWIS is solvable in pseudo-polynomial time in each of the following classes:
(P5, double-gem, co-domino)-free graphs (and their subclass (P5, co-P)-free graphs), (bull,
fork)-free graphs, (co-P, fork)-free graphs, and (P5, fork)-free graphs.

Remark. Due to the relation between the exact perfect matching problem and the exact
weighted maximum independent set problem, every polynomial result for EWIS and EWISα

yields a polynomial result for the exact perfect matching problem. Whenever EWIS or EWISα

11

are (pseudo-)polynomially solvable for a class of graphs G, the exact perfect matching problem
is (pseudo-)polynomially solvable for graphs in the set {G : L(G) ∈ G}. For example, since
a set G of graphs has bounded tree-width if and only if L(G) has bounded clique-width [21],
it follows that the exact perfect matching problem is solvable in pseudo-polynomial time for
graphs of bounded tree-width.

5 Concluding Remarks

In view of the unknown complexity of the exact perfect matching problem, the problem of
determining the complexity status of EWIS and EWISα is of particular interest for line
graphs of bipartite graphs, and their subclasses and superclasses. Line graphs of bipartite
graphs form a hereditary class of graphs, and they can be characterized in terms of forbidden
induced subgraphs as follows: A graph G is the line graph of a bipartite graph if and only G
is F-free, where F = {claw , diamond , C5, C7, . . .}, where a diamond is the graph obtained by
deleting a single edge from a complete graph on 4 vertices [35]. Using this characterization
and some the results obtained above, we now show that the class L(Bip) of line graphs of
bipartite graphs is sandwiched between two graph classes for which the complexity of EWISα

is known, and whose (infinite) sets of forbidden induced subgraphs differ only in two graphs.

Replacing the diamond in the above characterization of line graphs of bipartite graphs by
its subgraph C3 results in a smaller class of (claw , C3, C5, C7, . . .)-free graphs. This is precisely
the class of bipartite graphs of maximum degree at most 2, which means that every connected
component of such a graph is either path or an even cycle. The tree-width of such graphs
is at most 2, hence the problem is solvable in pseudo-polynomial time in this class. On the
other hand, if we replace the claw = K1,3 with K1,4 in the above characterization of L(Bip),
we obtain a class of graphs that strictly contains line graphs of bipartite graphs. This class
of (K1,4, diamond , C5, C7, . . .)-free graphs also contains the class of (K1,4, C3, C5, C7, . . .)-free
graphs, which is precisely the class of bipartite graphs of maximum degree at most 3. By
Theorem 5 from Section 3.1, the problem EWISα is hard for this class, and hence also for the
larger class of (K1,4, diamond , C5, C7, . . .)-free graphs.

To summarize, the class L(Bip) of line graphs of bipartite graphs is sandwiched between
two graph classes for which the complexity of EWISα is known, as the following diagram
shows:

Free({claw , C3, C5, C7, . . .}) ⊂ L(Bip) ⊂ Free({K1,4, diamond , C5, C7, . . .})
pseudo-polynomial ??? strongly NP-hard

It would be interesting to identify further sub- and superclasses of line graphs of bipartite
graphs where EWISα is solvable in pseudo-polynomial time or strongly NP−hard, respec-
tively. Another related question would be to determine the complexity status of EWIS and
EWISα in certain subclasses of perfect and bipartite graphs such as weakly chordal graphs
and their subclass chordal bipartite graphs.

References

[1] V.E. Alekseev,“On the number of maximal independent sets in graphs from hereditary
classes,” Combinatorial-algebraic methods in discrete optimization, University of Nizhny
Novgorod, 1991, pp. 58 (in Russian).

[2] S. Arnborg and A. Proskurowski, “Linear time algorithms for NP-hard problems
restricted to partial k-trees,” Discrete Appl. Math. 23 (1989), 11–24.

12

[3] E. Balas and C.S. Yu, “On graphs with polynomially solvable maximum-weight clique
problem,” Networks 19 (1989) 247-253.

[4] H.-J. Bandelt and H.M. Mulder, “Distance-hereditary graphs,” J. Combin. The-
ory Ser. B 41 (1986) 182–208.

[5] F. Barahona and W.R. Pulleyblank, “Exact arborescences, matchings, and cycles,”
Discrete Appl. Math. 16 (1987) 91-99.

[6] C. Berge, Graphs and hypergraphs. North Holland, Amsterdam, 1973.

[7] J. B lażewicz, P. Formanowicz, M. Kasprzak, P. Schuurman and G. Woegin-

ger, “A polynomial time equivalence between DNA sequencing and the exact perfect
matching problem,” Discrete Optim. (2007) 154–162.

[8] A. Brandstädt and F.F. Dragan, “On linear and circular structure of (claw, net)-free
graphs,” Discrete Appl. Math. 129 (2003) 285–303.

[9] A. Brandstädt, C.T. Hoàng and J.-M. Vanherpe, “On minimal prime extensions
of a four-vertex graph in a prime graph,” Discrete Math. 288 (2004) 9–17.

[10] A. Brandstädt, V.B. Le and H.N. de Ridder, “Efficient robust algorithms for the
maximum weight stable set problem in chair-free graph classes,” Inform. Process. Lett.
89 (2004) 165-173.

[11] A. Brandstädt, V.B. Le and J. Spinrad, Graph classes: a survey. SIAM Monographs
on Discrete Mathematics and Applications. SIAM, Philadelphia, PA, 1999.

[12] H. Broersma, T. Kloks, D. Kratsch and H. Müller, “Independent sets in asteroidal
triple-free graphs,” SIAM J. Discrete Math. 12 (1999) 276–287.

[13] B. Courcelle, J.A. Makowsky and U. Rotics, “Linear Time Solvable Optimization
Problems on Graphs of Bounded Clique-Width,” Theory Comput. Systems 33 (2000)
125–150.

[14] O. Cogis and E. Thierry, “Computing maximum stable sets for distance-hereditary
graphs,” Discrete Optim. 2 (2005) 185–188.

[15] G. Damiand, M. Habib and C. Paul, “A simple paradigm for graph recognition: appli-
cation to cographs and distance hereditary graphs.” Combinatorics and computer science
(Palaiseau, 1997). Theoret. Comput. Sci. 263 (2001) 99–111.

[16] M. Dawande, P. Keskinocak, J.M. Swaminathan and S. Tayur, “On Bipartite and
Multipartite Clique Problems,” J. Algorithms 41 (2001) 388–403.

[17] V.G. Dĕineko and G.J. Woeginger, “On the robust assignment problem under a fixed
number of cost scenarios,” Oper. Res. Lett. 34 (2006) 175–179.

[18] A. Ehrenfeucht and G. Rozenberg, “Primitivity is hereditary for 2-structures,” The-
oret. Comput. Sci. 70 (1990) 343–358.

[19] T. Gallai, “Transitiv orientierbare graphen,” Acta Math. Acad. Sci. Hungar. 18 (1967)
25–66.

[20] M.R. Garey and D.S. Johnson (1979). Computers and intractability. A guide to the
theory of NP-completeness. CA, Freeman.

13

[21] F. Gurski and E. Wanke, “Line graphs of bounded clique-width,” Discrete
Appl. Math. to appear, 2007.

[22] M. Habib and M.C. Maurer, “On the X-join decomposition for undirected graphs,”
Discrete Appl. Math. 1 (1979) 201–207.

[23] C.T. Hoáng and B. Reed, “Some classes of perfectly orderable graphs,” J. Graph Theory
13 (1989) 445-463.

[24] W.-L. Hsu and T.-H. Ma, “Fast and simple algorithms for recognizing chordal compa-
rability graphs and interval graphs,” SIAM J. Comput. 28 (1999), 1004-1020.

[25] A.V. Karzanov, “Maximum matching of given weight in complete and complete bipar-
tite graphs,” Cybernetics 23 (1987) 8-13; translation from Kibernetika 1 (1987) 7-11.

[26] M. Leclerc, “Polynomial time algorithms for exact matching problems,” Masters Thesis,
University of Waterloo, Waterloo, 1986.

[27] V.V. Lozin and M. Milanič, “A polynomial algorithm to find an independent set
of maximum weight in a fork-free graph,” J. Discrete Algorithms (2008), to appear.
doi:10.1016/j.jda.2008.04.001.

[28] R.H. Möhring, “Algorithmic aspects of comparability graphs and interval graphs,” in:
I. Rival (Ed.), Graphs and Orders, D. Reidel, Boston, 1985, 41–101.

[29] R.H. Möhring and F.J. Radermacher, Substitution decomposition for discrete struc-
tures and connections with combinatorial optimization. Algebraic and combinatorial
methods in operations research, 257–355, North-Holland Math. Stud., 95, North-Holland,
Amterdam, 1984.

[30] K. Mulmuley, U. Vazirani and V.V. Vazirani, “Matching is as easy as matrix in-
version,” Combinatorica 7 (1987) 105-113.

[31] Y. Okamoto, T. Uno and R. Uehara, “Linear-time counting algorithms for inde-
pendent sets in chordal graphs,” Graph-theoretic concepts in computer science, 433–444,
Lecture Notes in Comput. Sci. 3787, Springer, Berlin, 2005.

[32] C.H. Papadimitriou and M. Yannakakis, “The complexity of restricted spanning tree
problems,” J. ACM 29 (1982) 285-309.

[33] E. Prisner, “Graphs with few cliques,” Graph Theory, Combinatorics, and Algorithms,
Vol. 1, 2 (Kalamazoo, MI, 1992), 945-956, Wiley-Interscience Publ., Wiley, New York,
1995.

[34] J. Ramalingam and C. Pandu Rangan, “A unified approach to domination problems
on interval graphs,” Inform. Process. Lett. 27 (1988) 271-274.

[35] W. Staton and G.C. Wingard, “On line graphs of bipartite graphs,” Util. Math. 53
(1998) 183–187.

[36] K.J. Supowit, “Finding a maximum planar subset of a set of nets in a channel,” IEEE
Trans. on CAD of ICAS CAD-6 (1987) 93–94.

[37] R.E. Tarjan, “Decomposition by clique separators,” Discrete Math. 55 (1985) 221–232.

[38] S. Tsukiyama, M. Ide, H. Ariyoshi and I. Shirakawa, “A new algorithm for gener-
ating all the maximal independent sets,” SIAM J. Comput. 6 (1977) 505-517.

14

[39] S.H. Whitesides, An algorithm for finding clique cut-sets, Inform. Process. Lett. 12
(1981) 31–32.

15

Appendix

We present some of the missing proofs and algorithms.

Lemma 6. There is an O(nb2) dynamic programming algorithm that computes the set B of all
values b′ ∈ [b] such that there is a set S and a mapping a (as above) such that

∑

i∈S a(i) = b′.

Proof. The proof is by induction on n. The statement clearly holds for n = 1, as in this case
we have B = {b′ ∈ A1 : b′ ≤ b}.

Suppose now that n > 1. Let I = (A1, . . . , An; b) be an instance of the GSS problem. Let
B′ be the inductively constructed set of all possible values of b′ ∈ [b] such that the solution
to the GSS problem on the instance (A1, . . . , An−1; b

′) is yes. By induction, the set B′ was
constructed in time O((n − 1)b2).

Let β ∈ [b]. Then, β will belong to B, i.e., the solution to the GSS, given (A1, . . . , An;β),
will be yes, if and only if either β ∈ B′, or we can write β as β = b′ + an for some b′ ∈ B′

and an ∈ An. In other words, B = B′ ∪ B′′, where B′′ denotes the set of all such sums:
B′′ = {b′ + an : b′ ∈ B′, an ∈ An, b

′ + an ≤ b}.

The set B′′ can be constructed in time O(b2). Adding this time complexity to the time
O((n− 1)b2) needed to construct B′ proves the lemma.

Pseudo-polynomial-time solutions to EWIS

Interval graphs

Interval graphs are intersection graphs of intervals on the real line, and many optimization
problems can be solved by dynamic programming on these graphs. A representation of interval
graphs that is particularly suitable for the EWIS problem is the following. It has been shown
by Ramalingam and Pandu Rangan [34] that a graph G = (V,E) is interval if and only if it
admits a vertex ordering (v1, . . . , vn) such that for all triples (r, s, t) with 1 ≤ r < s < t ≤ n,
the following implication is true:

if [vr, vt] ∈ E then [vs, vt] ∈ E .

Moreover, such an ordering of an interval graph can be found in time O(n + m). Based on
this ordering, we can prove the following statement.

Theorem 11. EWIS admits an O(Mn+m) algorithm for interval graphs.

Proof. Let (v1, . . . , vn) be a vertex ordering such that [vs, vt] ∈ E, whenever [vr, vt] ∈ E, for
all triples (r, s, t) with 1 ≤ r < s < t ≤ n.

For every i ∈ [n], let Gi denote the subgraph of G induced by {v1, . . . , vi} (also, let G0

be the empty graph). Then, for every i ∈ [n], either there is a j = j(i) such that NGi
(vi) =

{j, j + 1, . . . , i − 1}, or NGi
(vi) = ∅ (in which case let us define j(i) = i). Now, if I is an

independent set of Gi, then either vi ∈ I (in which case I\{vi} is an independent set of
Gj(i)−1), or vi /∈ I (in which case I is an independent set of Gi−1). This observation is the key
to the following simple O(Mn+m) dynamic programming solution to the EWIS problem on
interval graphs.

Step 1. Find a vertex ordering (v1, . . . , vn) as above.
Step 2. Set EWIS(G0, w, k) to no for all k ∈ [M].
Step 3. For i = 1, . . . , n, do the following:

16

3.1. Find j ∈ [i] such that NGi
(vi) = {j, j + 1, . . . , i− 1}.

3.2. For k ∈ [M], do the following:
If k = w(vi), set EWIS(Gi, w, k) to yes.
If k < w(vi), set EWIS(Gi, w, k) to EWIS(Gi−1, w, k).
If k > w(vi), set EWIS(Gi, w, k) to yes if at least one of the solutions to
EWIS(Gj(i)−1, w, k − w(vi)) and EWIS(Gi−1, w, k) is yes, and to no otherwise.

Step 4. Output the solution to EWIS(Gn, w,M).

AT-free and (claw ,net)-free graphs

A triple {x, y, z} of pairwise non-adjacent vertices in a graph G is an asteroidal triple if for
every two of these vertices there is a path between them avoiding the closed neighborhood of
the third. Formally, x and y are in the same component of G−N [z], x and z are in the same
component of G − N [y], and y and z are in the same component of G − N [y].1 A graph is
called AT-free if it has no asteroidal triples.

Our dynamic programming algorithm that solves EWIS for AT-free graphs is based on
the dynamic programming approach to the WIS problem in AT-free graphs, developed by
Broersma et al. in [12]. Let us start with a definition.

Definition 1. Let x and y be two distinct nonadjacent vertices of an AT-free graph G. The
interval I(x, y) is the set of all vertices z of V (G)\{x, y} such that x and z are in one component
of G−N [y], and z and y are in one component of G−N [x].

Now, we recall some structural results from [12].

Theorem 12 ([12]). Let I = I(x, y) be a nonempty interval of an AT-free graph G, and let
s ∈ I. Then there exist components Cs

1 , . . . , C
s
t of G−N [s] such that the components of I\N [s]

are precisely I(x, s), I(s, y), and Cs
1 , . . . , C

s
t .

Theorem 13 ([12]). Let G be an AT-free graph, let C be a component of G−N [x], let y ∈ C,
and let D be a component of the graph C −N [y]. Then N [D] ∩ (N [x]\N [y]) = ∅ if and only
if D is a component of G−N [y].

Theorem 14 ([12]). Let G be an AT-free graph, let C be a component of G−N [x], let y ∈ C,
and let C ′ be the component of G−N [y] that contains x. Let B1, . . . , Bl denote the components
of the graph C −N [y] that are contained in C ′. Then I(x, y) = ∪l

i=1Bi.

We will also need the following general statement.

Observation 15. Let (G,w) be a weighted graph. Then, the solution to EWIS(G,w, k) is
yes if and only if there is a vertex x ∈ V (G) such that the solution to EWIS(G−N(x), w, k)
is yes.

Combining this observation with Theorems 13 and 14, we obtain the following lemma.

Lemma 16. Let (G,w) be a weighted AT-free graph, G = (V,E). Let x ∈ V and let C be
a component of G − N [x]. For a vertex y of C, let Cy denote the subgraph of G induced by
C −N(y). Then, the solution to EWIS(C,w, k) is yes if and only if there is a vertex y ∈ C
such that the solution to EWIS(Cy, w, k) is yes. Moreover, the connected components of such
a Cy are precisely {y}, I(x, y), and the components of G−N [y] contained in C.

1Recall that the closed neighborhood of x is defined as N [x] = N(x) ∪ {x}.

17

Similarly, using Theorem 12 we obtain the following conclusion.

Lemma 17. Let (G,w) be a weighted AT-free graph, G = (V,E). Let I = I(x, y) be an
interval of G. If I = ∅, then the solution to EWIS(G[I], w, k) is yes if and only if k = 0.
Otherwise, let us denote by Is the subgraph of G induced by I −N(s), for all s ∈ I. Then, the
solution to EWIS(I, w, k) is yes if and only if there is a vertex s ∈ I such that the solution to
EWIS(Is, w, k) is yes. Moreover, the connected components of such an Is are precisely {s},
I(x, s), I(s, y), and the components of G−N [s] contained in I.

Theorem 18. EWIS admits a pseudo-polynomial algorithm for AT -free graphs.

Proof. It follows from the above discussion that the following pseudo-polynomial algorithm
correctly solves the problem.

Step 1. For every x ∈ V compute all components of G−N [x].
Step 2. For every pair of nonadjacent vertices x, y ∈ V (G) compute the interval I(x, y).
Step 3. Sort all the components and intervals according to nonincreasing number of vertices.
Step 4. In the order of Step 3, compute the solutions to EWIS(C,w, k), for each component
C (for all k ∈ {0, 1, . . . , w(C)}) and the solutions to EWIS(I, w, k) for each interval I (for
all k ∈ {0, 1, . . . , w(I)}). To compute the solutions to EWIS(C,w, k) for a component C,
first compute the solutions to EWIS(C − N(y), w, k), for all y ∈ C, by applying Lemma 16
and Corollary 7. Similarly, to compute the solutions to EWIS(I, w, k) for an interval I, first
compute the solutions to EWIS(I − N(s), w, k), for all s ∈ I, by applying Lemma 17 and
Corollary 7.
Step 5. Compute the solution to EWIS(G,w, k) using Observation 15 and Corollary 7.

In [8], it is shown that for every vertex v of a (claw ,net)-free graphG, the non-neighborhood
of v in G is AT-free. Thus, Theorem 18 immediately implies the following result.

Corollary 19. EWIS admits a pseudo-polynomial algorithm for (claw ,net)-free graphs.

Distance-hereditary graphs

A graph is distance hereditary if the distance between any two connected vertices (that is,
vertices in the same connected component) is the same in every induced subgraph in which they
remain connected.2 Bandelt and Mulder provided in [4] a pruning sequence characterization
of distance-hereditary graphs: whenever a graph contains a vertex of degree one, or a vertex
with a twin (another vertex sharing the same neighbors), remove such a vertex. A graph
is distance-hereditary if and only if it the application of such vertex removals results in a
single-vertex graph.

A pruning sequence of a distance-hereditary graph can be computed in linear time [15] and
can be useful for algorithmic developments on distance-hereditary graphs. A solution to the
WIS problem in distance-hereditary graphs based on the pruning sequence characterization
has been developed by Cogis and Thierry in [14]. It turns out that their approach can be
generalized in order to solve the exact version of the problem.

Theorem 20. EWIS admits an O(M2n+m) algorithm for distance-hereditary graphs.

Circle graphs

Circle graphs are the intersection graphs of chords on a circle. Our algorithm for EWIS

on circle graphs is based on the dynamic programming solution for the IS problem, developed
by Supowit in [36].

2The distance between two vertices u and v in a connected graph G is the length (i.e., the number of edges)
of a shortest path connecting them.

18

Theorem 21. EWIS admits an O(M2n2) algorithm for circle graphs.

Proof. Consider a finite set of N chords on a circle. We may assume without loss of generality
that no two chords share an endpoint. Number the endpoints of the chords from 1 to 2N in
the order as they appear as we move clockwise around the circle (from an arbitrary but fixed
starting point).

The idea is simple. For 1 ≤ i < j ≤ 2N , let G(i, j) denote the subgraph of G induced by
chords whose both endpoints belong to the set {i, i + 1, . . . , j}. Obviously G = G(1, 2N).

Let 1 ≤ i < j ≤ 2N . If j = i+ 1 then the solution to EWIS(G(i, j), w, k) is yes if and only
if either k = 0, or (i, i+ 1) is a chord and k = w((i, i + 1)).

Otherwise, let r be the other endpoint of the chord whose one endpoint is j. If r < i or
r > j, then no independent set of the graph G(i, j) contains the chord (r, j), so the solution to
EWIS(G(i, j), w, k) is yes if and only if the solution to EWIS(G(i, j−1), w, k) is yes. Suppose
now that i ≤ r ≤ j − 1 and let I be an independent set of G(i, j). The set I may or may
not contain the chord (r, j). If I does not contain (r, j), then I is an independent set of of
G(i, j − 1) as well. If I contains (r, j), then no other chord in I can intersect the chord (r, j).
In particular, this implies that I is of the form I = {(r, j)}∪ I1 ∪ I2 where I1 is an independent
set of G(i, r − 1) and I2 is an independent set of G(r + 1, j − 1).

Therefore, the solution to EWIS(G(i, j), w, k) is yes if and only if either the solution to
EWIS(G(i, j− 1), w, k) is yes, or the solution to EWIS(G′, w, k) is yes, where G′ is the graph
whose connected components are G[{(r, j)}], G(i, r − 1) and G(r + 1, j − 1). Assuming that
the solutions for G(i, r− 1) and G(r+ 1, j − 1) have already been obtained recursively, we can
apply Corollary 7 in this case.

The above discussion implies an obvious O(M2n2) algorithm that correctly solves the
problem.

Graphs of clique-width at most k

The clique-width of a graph G is defined as the minimum number of labels needed to
construct G, using the following four graph operations:

(i) Create a new vertex v with label i (denoted by i(v)).

(ii) Take the disjoint union of two labeled graphs G and H (denoted by G⊕H).

(iii) Join by an edge each vertex with label i to each vertex with label j (i 6= j, denoted by
ηi,j).

(iv) Rename label i to j (denoted by ρi→j).

An expression built from the above four operations is called a clique-width expression. A
clique-width expression using k labels is called a k-expression. Each k-expression t uniquely
defines a labeled graph lab(t), where the labels are integers {1, . . . , k} associated with the
vertices and each vertex has exactly one label. We say that a k-expression t defines a graph
G if G is equal to the graph obtained from the labeled graph lab(t) after removing its labels.
The clique-width of a graph G is equal to the minimum k such that there exists a k-expression
defining G.

Many graph problems that are NP-hard for general graphs are solvable in linear time
when restricted to graphs of clique-width at most k, if a k-expression is given as part of the
input [13]. EWIS is no exception.

Theorem 22. For every fixed k, EWIS admits an O(M2l) algorithm for graphs of clique-width
at most k, where l is the number of operations in a given k-expression for G.

19

Proof. Suppose that the labels are integers {1, . . . , k} = [k]. For every subset of labels S ⊆ [k],
let EWIS(G,w, S,m) denote the answer to the following question: “Is there an independent
set of G with total weight m that contains exactly the labels from S?”

Given a k-expression t defining the input graph G, we can solve EWIS(G,w,M) by first
computing all the values for EWIS(G,w, S,m), for every subset of labels S ⊆ [k], and every
m ∈ [M]. It is easy to see that this can be performed in time O(M2l) by the following dynamic
programming algorithm.

If |V | = 1 then let v ∈ V . For all S ⊆ [k], and for all m ∈ [M], let

EWIS(G,w, S,m) =

{

yes , if S = {label(v)} and m = w(v);
no, otherwise.

If G = G1 ⊕G2 then let for all S ⊆ [k], and for all m ∈ [M]:

EWIS(G,w, S,m) =























yes , if EWIS(G1, w, S,m) =yes;
yes , if EWIS(G2, w, S,m) =yes;
yes , if there is an m′ ∈ [m− 1] such that

EWIS(G1, w, S,m
′) =EWIS(G2, w, S,m −m′) =yes;

no, otherwise.

This can be computed in time O(M2), similarly as in Corollary 7.
If G = ηi,j(G1) then let for all S ⊆ [k], and for all m ∈ [M]:

EWIS(G,w, S,m) =

{

EWIS(G1, w, S,m), if {i, j} * S;
no, otherwise.

If G = ρi→j(G1) then let for all S ⊆ [k], and for all m ∈ [M]:

EWIS(G,w, S,m) =







EWIS(G1, w, S,m), if S ∩ {i, j} = ∅;
EWIS(G1, w, S ∪ {i},m), if S ∩ {i, j} = {j};
no, otherwise.

Having computed all the values EWIS(G,w, S,m), the solution to EWIS(G,w,M) is
clearly given by

EWIS(G,w,M) =

{

yes , if there is an S ⊆ [k] such that EWIS(G,w, S,M) =yes;
no, otherwise.

Chordal graphs

Theorem 23. EWIS admits an O(M2n(n+m)) algorithm for chordal graphs.

Proof. Given a chordal graph G, we first compute a clique tree of G. This can be done in time
O(n +m) [24]. A clique tree of a chordal graph G is a tree T whose nodes are the maximal
cliques of G, such that for every vertex v of G, the subgraph Tv of T induced by the maximal
cliques containing v is a tree. Furthermore, we fix an arbitrary node Kr in the clique tree in
order to obtain a rooted clique tree. For a maximal clique K, we denote by G(K) the subgraph
of G induced by the vertices of K and all vertices contained in some descendant of K in T .

20

The algorithm is based on a set of identities developed by Okamoto et al. in [31], where
a clique tree representation was used to develop linear-time algorithms to count independent
sets in a chordal graph. Let IS(G) be the family of independent sets in G. For a vertex
v, let IS(G, v) be the family of independent sets in G that contain v. For a vertex set U ,
let IS(G,U) be the family of independent sets in G that contain no vertex of U . Consider
a maximal clique K of G, and let K1, . . . ,Kl be the children of K in T . (If K is a leaf of
the clique tree, we set l = 0.) Then, as shown in [31], for every distinct i, j ∈ [l], the sets
V (G(Ki))\K and V (G(Kj))\K are disjoint. Moreover, if ⊔ denotes the disjoint union, the
following relations hold:

IS(G(K)) = IS(G(K),K) ⊔
⊔

v∈K IS(G(K), v) ;

IS(G(K), v) =

{

I ∪ {v}
∣

∣

∣
I =

⋃l
i=1 Ii, Ii ∈

{

IS(G(Ki), v), if v ∈ Ki;

IS(G(Ki),K ∩Ki), otherwise.

}

;

IS(G(K),K) =
{

I
∣

∣

∣
I =

⊔l
i=1 Ii, Ii ∈ IS(G(Ki),K ∩Ki)

}

;

IS(G(Ki),K ∩Ki) = IS(G(Ki),Ki)) ⊔
⊔

u∈Ki\K
IS(G(Ki), u) for each i ∈ [l] .

We extend our usual Boolean predicate EWIS(H,w, k) to the following two: for a vertex v of
a weighted graph (H,w) and in integer k, let EWIS(H,w, k, v) denote the Boolean predicate
that is yes if and only if in H there is an independent set I of total weight k that contains v.
Also, for a set of vertices U let EWIS(H,w, k, U) take the value yes if and only if in H there
is an independent set of total weight k that contains no vertex from U . Based on the above
equations, we can develop the following recursive relations for EWIS:

EWIS(G(K), w, k) = EWIS(G(K), w, k,K) ∨
∨

v∈K:w(v)≤k

EWIS(G(K), w, k, v) (3)

where ∨ denotes the usual Boolean OR function (with the obvious identification yes ↔ 1,
no ↔ 0). That is, its value is yes if at least one of its arguments is yes, and no otherwise.

EWIS(G(K), w, k, v) = GSS(A1, . . . , Al, k −w(v)) (4)

where GSS(A1, . . . , Al, k) denotes the solution to the generalized subset sum problem with
the input (A1, . . . , Al, k), and the sets Ai for i ∈ [l] are given by

Ai =

{

{k′ − w(v) : w(v) ≤ k′ ≤ k, EWIS(G(Ki), w, k
′, v) = yes}, if v ∈ Ki;

{k′ : 1 ≤ k′ ≤ k, EWIS(G(Ki), w, k
′,K ∩Ki) = yes}, otherwise.

Note that if Ii ∈ IS(G(Ki), v) and Ij ∈ IS(G(Kj), v) for some distinct indices i, j ∈ [l], then
we have Ii ∩ Ij = {v}. Moreover, since this is the only possible nonempty intersection of

two independent sets from
⋃l

i=1 Ii in the equation for IS(G(K), v), it follows that the sum

of the weights of the sets Ii\{v} (over all i ∈ [l]) equals to the weight of
(

⋃l
i=1 Ii

)

\{v}, thus

justifying Equation (4).

Similarly, we have

EWIS(G(K), w, k,K) = GSS(A1, . . . , Al, k) (5)

where, for each i ∈ [l], the set Ai is given by

Ai = {k′ : 1 ≤ k′ ≤ k, EWIS(G(Ki), w, k
′,K ∩Ki) = yes} ,

21

and, finally, for each i ∈ [l], we have:

EWIS(G(Ki), w, k,K ∩Ki) = EWIS(G(Ki, w, k,Ki)) ∨
∨

u∈Ki\K

EWIS(G(Ki), w, k, u) . (6)

Given the above equations, it is now easy to develop a pseudo-polynomial dynamic pro-
gramming algorithm. Having constructed a rooted tree T of G, we traverse it in a bottom-up
manner. For a leaf K, we have

EWIS(G(K), w, k,K) =

{

yes , if k = 0;
no, otherwise.

and

EWIS(G(K), w, k, v) =

{

yes , if w(v) = k;
no, otherwise.

.

For every other node K, we compute the values of EWIS(G(K), w, k,K) and
EWIS(G(K), w, k, v) by referring to the recursive relations (6), (5) and (4) in this order.
Finally, the value of EWIS(G,w, k) is given by EWIS(G(Kr), w, k), which can be computed
using Equation (3).

The correctness of the procedure follows immediately from the above discussion. To justify
the time complexity, observe that in a node K of the tree with children K1, . . . ,Kl, the number
of operations performed is O(

∑l
i=1 |Ki| + lM2 + |K|lM2). Summing up over all the nodes of

the clique tree, and using the fact that a chordal graph has at most n maximal cliques, which
satisfy

∑

K∈V (T) |K| = O(n+m), the claimed complexity bound follows.

mK2-free graphs

Theorem 24. For every positive integer m, EWIS admits a pseudo-polynomial algorithm for
mK2-free graphs.

Proof. All maximal independent sets I1, . . . , IN in an mK2-free graph can be found in poly-
nomial time [1, 3, 33, 38]. Since every independent set is contained in a maximal one,
EWIS(G,w, k) will take the value yes if and only if there is an i ∈ [N] such that EWIS(G[Ii], w, k)
is yes. Thus, the EWIS problem in mK2-free graphs reduces to solving polynomially many
instances of the subset sum problem.

Subclasses of P5- and fork-free graphs

Theorem 10. EWIS is solvable in pseudo-polynomial time in each of the following classes:
(P5, double-gem, co-domino)-free graphs (and their subclass (P5, co-P)-free graphs), (bull,
fork)-free graphs, (co-P, fork)-free graphs, and (P5, fork)-free graphs.

Proof. This theorem essentially follows from Theorem 9 and the results in [10] and [23] (see
also [9] for some applications of modular decomposition to the WIS problem). We briefly
summarize the main ideas.

Every prime (P5, double-gem, co-domino)-free graph is 2K2-free (the complementary ver-
sion of this statement is proved in [23]). Since we can easily extend Theorem 24 to the extended
version of EWIS, this implies the result for (P5, double-gem, co-domino)-free graphs.

The (extended) EWIS problem can be solved in pseudo-polynomial time for co-gem-free
graphs. Indeed, for every vertex v of a co-gem-free graph G, the non-neighborhood of v in G is
P4-free. So the problem reduces to solving O(nM) subproblems in P4-free graphs, which can

22

be done for example by modular decomposition. Every P4-free graph is either disconnected,
or its complement is disconnected. Thus, the only prime P4-free graph is the graph on a single
vertex.

In [10], it is shown that prime graphs that contain a co-gem and are either (bull , fork)-
free, (co-P, fork)-free or (P5, fork)-free have a very simple structure. The (extended) EWIS

problem can be solved in pseudo-polynomial time for such graphs. Together with the above
observation about co-gem-free graphs and Theorem 9, this concludes the proof.

Exact problems for graphs of bounded clique-width

As shown by Courcelle et al. [13], every problem expressible in monadic second order logic
with quantification over the vertices and vertex sets can be solved in linear time for graphs of
clique-width at most k. More formally, using the terminology from [13]:

Theorem 25 (Theorem 4 from [13]). Let C be a class of p-graphs of clique-width at most k,
each given by a k-expression g defining it. Then every LinEMSOL(τ1,p) optimization prob-
lem over C can be solved in time O(l(g)), where l(g) is the number of operations in g. A
corresponding algorithm can be efficiently constructed from the logical formula describing the
problem.

A simple modification of the original proof of this theorem from [13] shows that a similar
conclusion holds true for LinEMSOL(τ1,p) exact problems over C.

Definition 2 (LinEMSOL(τ) Exact Problems over K). For a vocabulary τ and a class of
τ -structures K, we say that a decision problem P is a LinEMSOL(τ) exact problem over K if
it can be expressed in the following form:
Instance: A τ -structure A ∈ K, m evaluation functions f1, . . . , fm associating non-negative
integer values to the elements of A, and a non-negative integer b.
Question: Is there an assignment z to the free variables in θ such that

〈A, z〉 |= θ(X1, . . . ,Xl) and
∑

i∈[l],j∈[m]

aij|z(Xi)|j = b ,

where θ is an MSOL(τ) formula having free set variables X1, . . . ,Xl, |z(Xi)|j is a short
notation for

∑

a∈z(Xi)
fj(a), and {aij : i ∈ [l], j ∈ [m]} are non-negative integers.

Theorem 26. Let C be a class of p-graphs of clique-width at most k, each given by a k-
expression g defining it. Then every LinEMSOL(τ1,p) exact problem over C can be solved in
time O(b2l(g)), where l(g) is the number of operations in g. A corresponding algorithm can be
efficiently constructed from the logical formula describing the problem.

Proof. Let [b]0 = {0, 1, . . . , b} denote the set of non-negative integers not exceeding b.

We prove Theorem 26 by mimicking the proof of Theorem 4 from [13] (pages 144–146),
with the following modification:

For A ⊆ P(V (G))l, instead of defining Max−h(A), define

h(A) = {h(D1, . . . ,Dl) : (D1, . . . ,Dl) ∈ A} ∩ [b]0 .

Items (1) and (2) from [13] then become, respectively:

h(A⊠B) = {h(D1, . . . ,Dn)+h(D′
1, . . . ,D

′
n) : (D1, . . . ,Dn) ∈ A, (D′

1, . . . ,D
′
n) ∈ B}∩ [b]0 (7)

and
h(A ∪B) = h(A) ∪ h(B) . (8)

23

Also, from the definition of LinEMSOL(τ) exact problems it follows that a LinEMSOL(τ1,p)
exact problem over a class of graphs K can be formulated as verifying whether b ∈ h(sat(G, θ))
for a given graph G ∈ K presented over τ1,p, where θ is a fixed MSOL(τ1,p) formula.

Part (i) of the proof remains unchanged. Part (ii) of the proof becomes:

(ii) Traverse Tree(g) from bottom to top and, at each node x and for each formula ϕ
assigned to x by the previous step, compute h(sat(Graph(x), ϕ)) as follows:

• If x is a leaf compute h(sat(Graph(x), ϕ)) directly.

• If x corresponds to a unary operation, set h(sat(Graph(x), ϕ)) = h(sat(Graph(y), ϕ′))
where y is the son of x, and ϕ′ is the formula assigned to y by the previous step.

• If x corresponds to the binary operation ⊕ then using (7)–(8) compute
h(sat(Graph(x), ϕ)) from the two lists of values: h(sat(Graph(u), ϕ′

j)) and
h(sat(Graph(v), ψ′

j)), for j ∈ [m], where u and v are the sons of x in Tree(g) and
ϕ′

j and ψ′
j are the lists of formulas assigned to u and v by the previous step, respectively.

Also at each node x, each formula ϕ assigned to x and each b′ ∈ h(sat(Graph(x), ϕ)), keep
one tuple of sat(Graph(x), ϕ) that h maps to b′.

Finally, the claimed time complexity O(b2l(g)) follows from the fact that in each of the
O(l(g)) nodes of Tree(g), we perform constantly many computations of the type (7) or (8),
each of which takes O(b2) and O(b) time, respectively.

24

	Introduction
	Preliminary Observations
	Hardness Results
	EWIS in Bipartite Graphs
	A More General Hardness Result

	Polynomial Results
	Concluding Remarks

