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Abstract. We study the function evaluation problem in the priced information
framework introduced in [Charikar et al. 2002]. We characterize the best possible
extremal competitive ratio for the class of game tree functions. Moreover, we
extend the above result to the case when the cost of reading a variable depends on
the value of the variable. In this new value dependent cost variant of the problem,
we also exactly evaluate the extremal competitive ratio for the whole class of
monotone Boolean functions.

1 Introduction

Problem Statement. A function f over a set of variables V = {x1, x2, . . . , xn} is
given and we want to determine the value of f for a fixed but unknown assignment σ,
i.e., a choice of the values for the variables of V . We are allowed to adaptively read the
values of the variables. Each variable xi has an associated non-negative cost cxi which
is the cost incurred to read its value xi(σ). For each i = 1, . . . , n, the cost cxi is fixed
and known beforehand. The goal is to identify and read a minimum cost set of variables
U ⊆ V whose values uniquely determine the value f(σ) = f(x1(σ), . . . , xn(σ)) of f
w.r.t. the given assignment σ, regardless of the values of the variables not probed. We
say that such a set U ⊆ V is a proof for f with respect to the assignment σ.

An evaluation algorithm A for f adaptively reads the variables in V until the set
of variables read so far is a proof for the value of f . Given a cost assignment c =
(cx1 , . . . , cxn), we let cf

A(σ) denote the total cost incurred by the algorithm A to eval-
uate f under the assignment σ and cf (σ) the cost of the cheapest proof for f under the
assignment σ. We say that A is ρ-competitive if cf

A(σ) ≤ ρcf (σ), for every possible
assignment σ. We use γAc (f) to denote the competitive ratio ofA, that is, the minimum
ρ for which A is ρ-competitive. The best possible competitive ratio for any determin-
istic algorithm, then, is γf

c = minA γAc (f), where the minimum is computed over all
possible deterministic algorithms A.

The extremal competitive ratio γA(f) of an algorithm A is defined by γA(f) =
maxc γAc (f). The best possible extremal competitive ratio for any deterministic algo-
rithm is γ(f) = minA γA(f). This is a measure of the structural complexity of f
independent of a particular cost assignment and algorithm.
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Function evaluation problems have been extensively studied in AI, particularly in
the theory of computer aided games. The strategic evolution of the game is usually mod-
eled by a so called game tree [8, 19, 17]. In a game tree (formalized in Sect. 4), each
node represents a state of the game. The root is the current state. For each node/state ν,
its children are the set of possible states reachable from ν given the moves available to
the player moving in state ν. The possible moves for the two players are represented by
alternating levels of edges. A game tree of a certain depth is built by a computer in order
to explore the possible developments of the game from the current position. By assign-
ing to each leaf-state an estimate of the “goodness” of that state for the computer-player,
it is possible to evaluate all the inner states. The most fruitful move for the computer is
the one corresponding to the edge from the root to its children of maximum value. In
general, the evaluation of some leaf state might involve expensive computations. Since,
on the other hand, not all the leaf-state evaluations are needed to compute the node of
maximum value in the first level, we have here an instance of the problem of evaluating
a function by only looking at a cheap set of its variables.

In this paper we characterize the extremal competitiveness for the class of game tree
functions. Moreover, we also study the function evaluation problem when the cost of
reading a variable depends on the value of the variable. The evaluation algorithm knows
the cost cx(y) of reading x when x(σ) = y, for each variable x and for each value y
that the variable x can take.

This above model has applications in several situations. Consider, e.g., the decision
making process of a physician—or of a computer aided decision making system—who
has to decide the cheapest sequence of tests to perform on a patient in order to reli-
ably diagnose a given disease. Different tests typically involve different costs. In this
framework, costs are usually understood in an extended meaning encompassing the ac-
tual monetary costs, the distress of the patient, and the possible side-effects of the tests.
Also, tests’ costs might be dependent on the outcome: a single lab analysis might un-
dergo several phases, some of which are only performed depending on the result of the
previous ones. Analogously, there are tests that if positive, are necessarily followed by
a sequence of other tests—on which the decision maker has no alternative. In this case,
the cost of the “triggering” test can be considered as the sum of the whole set, in case its
outcome is positive, and only its own cost if the outcome is negative. It is then natural
to consider models in which tests’ costs are dependent on the outcome of the test itself.
We refer the interested reader to [22] and references quoted therein for a remarkable
account of several types of costs to be considered in inference procedures.

Besides the two examples above, function evaluation problems are found in a
plethora of different areas both in theoretical and applied computer science like
telecommunications [15], manufacturing [9], computer networks [10], satisficing search
problems [11]. For more on automatic diagnosis problems and computer aided medical
systems see also [1, 16] and references therein. Finally, the function evaluation problem
arises in query optimization, a major issue in databases [14].

Our Results. We obtain the tight extremal competitive ratio of monotone Boolean func-
tions in the new value dependent cost model extending the previous result of [6]. This
is achieved via an adaptation of the Linear programming based approach of [6].
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Outside the Boolean realm, we focus on the class of game tree functions. We obtain
the tight extremal competitive ratio for game trees. In particular we show that for any
game tree function f, but for special cases that we also characterize, the extremal com-
petitiveness γ(f) is equal to the maximum size of a certificate for f, i.e., of a minimal
set of variables which allow to prove an upper or lower bound on the value of f, for
some assignment σ. In fact, we provide a polynomial algorithm with competitiveness
γ(f) for any game tree function f. We also extend this result to the value dependent cost
model. Our result significantly improves the previous best known result in [4], where a
polynomial time algorithm was provided which achieves γ(f) competitiveness over a
restricted set of assignments, namely only those σ’s for which exactly one variable has
value f(σ).
Related Work. Most of the earlier work on function evaluation problems was done in
the classical unitary cost model for both deterministic and randomized algorithms or
assuming some statistical knowledge on the values of the variables (see, e.g., [21, 20,
18, 13]). The competitive analysis scenario was proposed by Charikar et al. in [2] where
several classes of functions were studied in this novel framework, including the class
of game trees. For game trees, Charikar et al. [2] presented a pseudo-polynomial time
algorithm with competitiveness 2γf

c . The extremal competitiveness for game trees was
also studied in [4] where a polynomial time algorithm was provided achieving com-
petitiveness γ(f) for any assignment σ such that there exists exactly one variable with
value f(σ). In [5] the authors showed a polynomial time algorithm with competitive-
ness 4γf

c . However, to date, there was no complete and exact characterization of the
optimal competitiveness for the evaluation of game trees.

All the above results are for the case when the cost is independent of the value of
the variable. In fact, this is the first paper taking into account the dependency of costs
on the values in the competitive analysis scenario. In [1] function evaluation with value
dependent costs was also discussed, even though in the probabilistic model considered
in [1] the dependency on the values can be absorbed in the distribution assigned to the
values of the variables. In [5], the case of unknown costs was also considered. This is
an attempt to address cases in which the algorithm has a reduced knowledge on the cost
assignment. It is important to notice that the model of [5] cannot be used to solve the
type of problems addressed here, and vice versa.

2 Preliminaries: the Linear Programming Approach
Let f : D → R be a real-valued function defined over a set of variables V =
{x1, . . . , xn}, where D ⊆ Rn. For x ∈ V , let D(x) denote the set of possible val-
ues that the variable x can take in the elements of the domain of f , that is, D(x) is the
projection of the set D on the x coordinate. For x ∈ V and y ∈ D(x), let cx(y) ≥ 0
denote the cost for querying the variable x, given that the value of x in the (unknown)
assignment σ is x(σ) = y. Furthermore, let cmin

x = min{cx(y) : y ∈ D(x)} and
cmax
x = max{cx(y) : y ∈ D(x)}, for all x ∈ V . We allow that the costs of query-

ing a certain variable are value dependent. In other words, the functions cx(y) are not
necessarily constant as functions of y, i.e., it is possible that cmin

x 6= cmax
x .

We assume that a bound r ≥ 1 is fixed (and known to the algorithm) on the maxi-
mum possible ratio between two costs of queries for a single variable. More precisely,
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we assume that the cost function satisfies, for all x ∈ V , cmax
x ≤ rcmin

x . Equivalently,
for every x ∈ V , and for every y1, y2 ∈ D(x), we have 0 ≤ cx(y1) ≤ rcx(y2). The set
of all such assignments of cost functions will be denoted by Cr(f). Note that without
such bound, no algorithm could guarantee any competitiveness.

In order to make explicit the dependency of our results on the bound r, we shall
now rephrase the definition of the competitive measures.

Definition 1 Let r ≥ 1. The r-extremal competitive ratio of a function f : D → R,
where D ⊆ Rn, is defined as γr(f) = minA γAr (f) where the minimum is taken over all

deterministic algorithms that evaluate f , and where γAr (f) = maxc∈Cr(f) maxσ∈D
cf
A(σ)

cf (σ)
.

It is not hard to see that every ρ-competitive algorithm for the value independent
cost model is an (r × ρ)-competitive algorithm in the value dependent cost model.
Therefore, γr(f) ≤ rγ(f). However, we shall see that this estimate of γr(f) loses an
additive term of r−1. For this we devise a variant of the Linear Programming Approach
introduced in [6] which is adapted to the value dependent cost model. We denote this
new scheme by LPA∗.

In order to describe the LPA∗ we shall need some new notation. Let P(f) denote
the set of inclusion-wise minimal proofs of f, i.e., the family of sets X such that there
exists at least one assignment σ with respect to which X is a proof for f, while no
subset of X is. Consider the following linear program LPf :

LPf :

{
Minimize

∑

x∈V

s(x) :
∑

x∈P

s(x) ≥ 1 ∀P ∈ P(f) and s(x) ≥ 0 ∀x ∈ V

}

Suppose that the set of variables already read is Y . We shall denote with fY the
restriction of f with respect to Y, that is, the function over V \Y obtained from f by
fixing the values of the variables in Y as given by the valued read so far, according
to the underlying fixed and unknown assignment σ. Let sY be a feasible solution to
the linear program LPfY . The LPA∗ chooses a variable u that minimizes the value of
cmin

x

sY (x) . (For definiteness, we let 0
0 := 0. This assures that the variables of zero cost are

always queried before the others.) Then, the cost assignment c is updated to a new cost
assignment c̃ defined as follows: For x ∈ V \(Y ∪ {u}) and y ∈ D(x), we let

c̃x(y) = cx(y)− δcx(y) where δcx(y) = cx(y) · cmin
u

cmin
x

· sY (x)
sY (u)

. (1)

Note that the quantities δcx(y) are well-defined. More importantly, the values of c̃x(y)
are chosen so that c̃ ∈ Cr(f{u}). (To see this, observe that equality c̃x(y1)/c̃x(y2) =
cx(y1)/cx(y2) holds for every x ∈ V \{u} and every y1, y2 ∈ D(x).) The above proce-
dure is repeated over fY ∪{u} using the new costs c̃, until the value of f is determined.

The linear programming approach for the value dependent cost model is formally
described in Fig. 1, where for the sake of efficiency, for each x ∈ V \ Y only cmin

x is
actually updated. An implementation of this meta-algorithm is then obtained by fixing
the rule used to choose at each iteration the feasible solution of LPfY , where Y is the
set of variables already probed.
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LPA∗(f, V, c)
Y ← ∅;
While the value of f is unknown

Let sY be a feasible solution for LPfY .

Let u be the unread variable x that minimizes cmin
x

sY (x)
.

Read(u)
For each v ∈ V \ Y do cmin

v ← cmin
v − sY (v)× cmin

u
sY (u)

Y = Y ∪ {u}
End While
Return the value of f

Fig. 1. The “value dependent cost” Linear Programming Approach

Lemma 1 Let LP be an implementation of the LPA∗. For each Y ⊂ V, let sY (·) be
the feasible solution used by LP when the set of variables already read is Y . Then, for
every r ≥ 1,

γLPr (f) ≤ r ·max
Y⊂V





∑

v∈V \Y
sY (v)



− r + 1.

Proof. If f has only one variable the result holds. We assume as induction hypothe-
sis that the result holds for every function that depends on less than n variables. Let
f be a function that depends on n variables. Let c ∈ Cr(f) be a cost function such
that γLPc (f) = γLPr (f), and let σ be an assignment for f that maximizes the ratio
cf
LP(σ)/cf (σ). For U ⊆ V , we denote c(U) =

∑
x∈U cx(x(σ)). Furthermore, let X

be a cheapest proof for f w.r.t. cost function c and assignment σ. Let us denote s∅(·)
with s(·). It is not hard to see that the 0-cost variables do not affect the competitiveness
of LP. Then, let u be the first variable selected by LP with cmin

u > 0. Therefore, in
particular, cu(u(σ)) > 0 and cmin

x > 0 for all variables x ∈ V . (Here and throughout
the proof, cmin

x denotes the value before the update.) For x ∈ V \{u} and y ∈ D(x),
we define the new cost function c̃(·) as in (1).

The total amount that the algorithm spends on f to prove the value of σ is at most
the total amount of change in the costs, summed over all the variables, plus the amount
that the algorithm spends on the remaining iterations, that is, the cost spent on f{u} to
prove the value of σV \{u} with respect to the new costs c̃(·). In formulae:

cf
LP(σ) ≤

∑

v∈V

δcv(v(σ))+c̃
f{u}
LP (σV \{u}) =

cmin
u

s(u)
·
∑

v∈V

cv(v(σ))
cmin
v

·s(v)+c̃
f{u}
LP (σV \{u}) ,

(2)
where c̃ is the cost function defined above.

Let X ′ be a cheapest proof for f{u} w.r.t. cost function c̃ and assignment σV \{u}.
Recall that X is a cheapest proof for f w.r.t. cost function c and assignment σ. Note
that X\{u} is also a proof for f{u} w.r.t. assignment σV \{u}. Then,

c(X) =
∑

v∈X

δcv(v(σ)) + c̃(X\{u}) ≥ cmin
u

s(u)
·
∑

v∈X

cv(v(σ))
cmin
v

· s(v) + c̃(X ′) . (3)
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Putting together the inequalities (2) and (3) and noting that c̃
f{u}
LP (σV \{u})/c̃(X ′) ≤

γLPr (f{u}), we have

γLPr (f) = γLPc (f) =
cf
LP(σ)
c(X)

≤ max





∑
v∈V

cv(v(σ))
cmin

v
· s(v)

∑
v∈X

cv(v(σ))
cmin

v
· s(v)

, γLPr (f{u})



 .

We shall now bound the first term in the maximum. In order to simplify formulas,
let us write τv for cv(v(σ))/cmin

v . We have that the first term in the maximum becomes
∑

v 6∈X τvs(v) +
∑

v∈X τvs(v)∑
v∈X τvs(v)

≤
∑

v 6∈X rs(v)∑
v∈X s(v)

+ 1 =
r
∑

v∈V s(v)− r
∑

v∈X s(v)∑
v∈X s(v)

+ 1

≤ r
∑
v∈V

s(v)− r + 1,

where the first inequality follows by 1 ≤ τv ≤ r; the equality by writing the summation
over V \ X as the difference between the summation over V and the one over X; the
second inequality follows because

∑
v∈X s(v) ≥ 1 by definition of the linear program

LPf and the fact that X is a minimal proof for f . Therefore we have

γLPr (f) ≤ max

{
r

∑

v∈V

s(v)− r + 1, γLPr (f{u})

}
.

and since f{u} depends on less than n variables, the induction hypothesis yields the
desired result. ut

3 Monotone Boolean Functions

By virtue of the above result, it is not hard to provide an upper bound on the extremal
competitiveness for monotone Boolean functions in the value dependent cost model.

Let ∆(f) = max
Y,σ





∑

v∈V \Y
s∗Y,σ(v)



 , where the maximum is taken over all possible

restrictions fY,σ of f (i.e., fY,σ is defined by an assignment σ of the values to the vari-
ables in Y ⊂ V ), and where s∗Y,σ(·) denotes an optimal solution of LPfY,σ

. Recently,
Cicalese and Laber have proved in [6] that for a large class of functions, which includes
all Boolean functions, ∆(f) is bounded above by PROOF (f), the size of a largest min-
imal proof of f . In particular, in conjunction with Lemma 1 this implies that for every
r ≥ 1 and for every Boolean function f , it holds that γr(f) ≤ r ·PROOF (f)− r + 1 .

We shall now provide a lower bound that matches the above upper bound. For
monotone Boolean functions, minimal proofs are usually referred to as maxterms and
minterms. A maxterm (minterm) can be defined as a minimal set of variables such that
for any σ that sets their value to 0 (1) we have f(σ) = 0 (f(σ) = 1). This is used in
the following lemma which provides the matching lower bound by generalizing a con-
struction of [2] and [3]. We use k(f) and l(f) to denote the size of the largest minterm
and the largest maxterm of f respectively. Thus, PROOF (f) = max{k(f), l(f)}.
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Theorem 1 Let f be a monotone Boolean function. Then γr(f) ≥ r · PROOF (f) −
r + 1.

Proof. Consider an algorithmA for evaluating f . We construct an assignment σA which
is ‘bad’ for A. Let C be a largest minterm of f , i.e., |C| = k(f). For x ∈ C, we set
cx(1) = r, and cx(0) = 1. For x 6∈ C, we set cx(1) = cx(0) = 0. For all variables in C
but the last one read by A we let x(σA) = 1. All the other variables are set to 0.

The algorithm spends r(|C| − 1) + 1 to prove that f(σA) = 0. In fact, since C is a
minterm, A cannot conclude that f evaluates to 0 before reading all variables in C. On
the other hand, the cheapest proof costs exactly 1 since there is a maxterm of f whose
intersection with C is exactly the last variable read byA. Thus, γr(f) ≥ r(k(f)−1)+1.
By an analogous argument, one can prove that γr(f) ≥ r(l(f) − 1) + 1 yielding the
desired result. ut

Combining this result with the above upper bound gives the exact value of γr(f)
for monotone Boolean functions.

Theorem 2 For every r ≥ 1 and for every monotone Boolean function f , we have

γr(f) = r ·max{k(f), l(f)} − r + 1 .

4 Game Trees

A game tree T is a tree, rooted at a node r, where every internal node has either a MIN
or a MAX label and the parent of every MIN (MAX) node is a MAX (MIN) node. Let V
be the set of leaves of T . Every leaf of V is associated with a real number, its value. The
value of a MIN (MAX) node is the minimum (maximum) of the values of its children.
The function computed by T maps the values of the leaves to the value of the root. We
shall identify T with the function it computes. Thus, if f is the function computed by
the game tree T , we shall also write T for f and TY for fY .

By a minterm (maxterm) of a game tree we shall understand a minimal set of leaves
whose values allow to state a lower (upper) bound on the value of the game tree. More
precisely, a minterm (maxterm) for a game tree T rooted at r is a minimal set C of
leaves of T such that if x(σ) ≥ ` (x(σ) ≤ `), for each x ∈ C then T (σ) ≥ ` (T (σ) ≤ `)
regardless of the values of the leaves y 6∈ C. We shall use the more general term certifi-
cate to either refer to a minterm or to a maxterm. We shall use FL

T and FU
T to denote

the family of all minterms and the family of all maxterms of T , respectively.
As an example, for the game tree function

T = max{min{x1, x2, x3},min{max{x4, x5}, x6}} ,

we haveFU
T = {{x1, x6}, {x2, x6}, {x3, x6}, {x1, x4, x5}, {x2, x4, x5}, {x3, x4, x5}}

and FL
T = {{x1, x2, x3}, {x4, x6}, {x5, x6}}.

These families can be obtained by the following recursive procedure:
• if r is a leaf then FL

T = FU
T = {{r}} ,
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• otherwise, let T1, . . . , Tp be the subtrees rooted at the children of r. If r is a MIN
node thenFU

T =
⋃p

i=1 FU
Ti

and1 FL
T =

∏p
i=1 FL

Ti
. If r is a MAX node,FL

T =
⋃p

i=1 FL
Ti

and FU
T =

∏p
i=1 FU

Ti
. For the ease of notation, when the function/tree T is clear from

the context we shall simply write FU and FL for FU
T and FL

T .
By the above recursion, it can be verified that every maxterm and every minterm

have a unique variable in common. Notice that the number of certificates of a game tree
can in general be exponential in the number of leaves. Therefore, an efficient algorithm
will never explicitly construct the whole families of certificates.

We shall use k(T ) and l(T ) to denote the largest minterm and maxterm of T , respec-
tively. These quantities play a critical role in the following lower bound on the extremal
competitiveness of every algorithm that evaluates a game tree (in the value dependent
cost model).

Theorem 3 Let T be a game tree. If each certificate of T has size at least 2 then
γr(T ) ≥ r ·max{k(T ), l(T )} − r + 1.

Proof. Consider an algorithm A for evaluating T . Mimicking the proof of Theorem 1,
fix a largest minterm C and consider the assignment σA which sets to 1 all variables in
C but the last one queried by A and sets to 0 all other variables. Also, for x ∈ C, we
set cx(1) = r, and cx(0) = 1. For x 6∈ C, we set cx(1) = cx(0) = 0.

Let x denote the last variable in C queried by A (the existence of such a variable
follows from equation (4) and the fact that every maxterm intersects C). Let X =
(V \C) ∪ {x}.

Claim. The set X contains a minterm.
Proof of claim. It is enough to show that X intersects every maxterm C ′. If C ′∩C =

{x}, the statement holds. Otherwise, since C ′ intersects C in precisely one variable and
|C ′| ≥ 2 by assumption, C ′ must contain a variable from X , which again implies the
desired conclusion.

Consider now the set CU ∪ CL where CU is a maxterm of T such that CU ∩ C =
{x}, and CL is a minterm contained in X . Then, CU ∪ CL is a proof for T (σA) = 0;
moreover, the cost of CU ∪ CL is 1. Since every proof must contain a maxterm, and
every maxterm intersects C, we conclude that the cheapest proof for σA costs exactly 1.

On the other hand, since C is a minterm, A cannot conclude that T (σ) < 1 before
reading all variables in C. Thus, γr(T ) ≥ r(k(T )− 1)+1. By an analogous argument,
one can prove that γr(T ) ≥ r(l(T )− 1) + 1 yielding the desired result. ut

Upper Bound. We shall now employ the Linear Programming Approach for obtaining
an upper bound on the (r-)extremal competitive ratio for game trees that matches the
above lower bound.

We need to introduce some more notation. Let T be a game tree on V . Consider a
run of an algorithm A for evaluating T . Let Y ⊆ V denote the set of variables read
by A at some point during its run and let σY be the assignment of real numbers to
the leaves in Y corresponding to the variables read. Suppose that the restriction TY

1 For all families of sets F1,F2, . . . ,Fk we define
∏

i Fi as follows:
∏k

i=1 Fi = {X|X =⋃k
i=1 Xi, Xi ∈ Fi, Xi 6= ∅}
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of T according to the assignment given by σY is non-constant. Let C be a minterm
(maxterm) of T . We define the (current) value of C as the minimum (maximum) value
in σY of the leaves in Y ∩C. We say that a minterm (maxterm) is completely evaluated
if it is entirely contained in Y . Let LB denote the maximum value of a completely
evaluated minterm (or −∞, if no minterm has been completely evaluated), and let UB
denote the minimum value of a completely evaluated maxterm (or ∞, if no maxterm
has been completely evaluated). Note that if UB (LB ) is finite, then every minterm
(maxterm) has a well-defined value.

In order to study the structure of a proof for T , it is useful to express the function
computed by T in terms of its certificates as follows. For every σ ∈ RV , we have:

T (σ) = max
CL∈FL

min{x(σ) : x ∈ CL} = min
CU∈FU

max{x(σ) : x ∈ CU} . (4)

It follows that LB (UB ) is the lower (upper) bound on the value of T (σ) for any as-
signment that extends σY . Moreover, since TY is assumed to be non-constant, we have
LB < UB .

As we show next, T can evaluate to any value between the two bounds.

Lemma 2 Let y ∈ R such that LB ≤ y ≤ UB . Then:

(i) The set V ≤y := (V \Y ) ∪ {x ∈ Y : x(σY ) ≤ y} contains a maxterm of T .
The set V ≥y := (V \Y ) ∪ {x ∈ Y : x(σY ) ≥ y} contains a minterm of T .

(ii) There is an assignment σ ∈ RV that extends the current partial assignment σY

such that T (σ) = y.

Proof. For part (i), we shall only prove that the set V ≤y contains a maxterm of T . The
other statement can be proved similarly.

Since the maxterms of T are precisely the minimal hitting sets of the minterms of
T , it suffices to show that the set V ≤y intersects every minterm of T . Suppose, for the
sake of contradiction, that there is a minterm CL of T disjoint from V ≤y. Then, CL is
contained in the set V \V ≤y = {x ∈ Y : x(σY ) > y}. In particular, this implies that
CL has been completely evaluated. Moreover, the value of CL is min{x(σY ) : x ∈
CL} > y ≥ LB , contradicting the definition of LB .

To see (ii), let CL (CU ) be a minterm (maxterm) of T contained in the set V ≥y

(V ≤y), and let σ be the assignment of values to the leaves of T that extends the current
assignment σY and satisfies x(σ) = y for all x ∈ V \Y . Then, the value of both CL

and CU with respect to σ is y. Therefore, T (σ) = y. ut

We say that a minterm (maxterm) C is active if for each leaf x ∈ C ∩ Y we have
x(σY ) > LB (x(σY ) < UB). In words, a minterm (maxterm) C is active if the evalu-
ation of its unevaluated leaves can still lead to an improvement in the lower bound LB
(upper bound UB ), i.e., can provide information on the value of the game tree. Note
that if all leaves of a certificate C have already been read, then C is non-active.

The following lemma characterizes the proofs of the restricted game tree TY . By
saying that a set of variables P is a proof of (a value) y for (a function) f we mean here
that P is a proof for f w.r.t. an assignment σ s.t. f(σ) = y.
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Lemma 3 (Proofs of a restricted game tree) Let P ⊆ V \Y . Then:

(1) [minterm proofs] Suppose that UB is finite. P is a proof of UB for TY if and only
if there is an active minterm CL of value at least UB such that CL\Y ⊆ P .

(2) [maxterm proofs] Suppose that LB is finite. P is a proof of LB for TY if and only
if there is an active maxterm CU of value at most LB such that CU\Y ⊆ P .

(3) [combined proofs] Let y ∈ (LB ,UB). P is a proof of y for TY if and only if there
is an active minterm CL of value yL and an active maxterm CU of value yU such
that LB < yU ≤ y ≤ yL < UB and such that (CL\Y ) ∪ (CU\Y ) ⊆ P .
If UB = ∞ then yL = ∞ is allowed. Similarly, if LB = −∞ then yU = −∞ is
allowed.

Proof. We shall prove (1) and (3). Item (2) can be proved similarly as (1).
(1): First, suppose that P is a proof of UB for TY w.r.t. an assignment σP of values

to the variables in P . Let LB ≤ y′ < UB , and consider the assignment σ′ that agrees
with σP on the variables in P and assigns y′ to the variables in V \(Y ∪ P ). By the
assumption on P , the restricted game tree TY evaluates to UB on σ′, or, equivalently,
T evaluates to UB on the assignment σ composed of σY and σ′. By equation (4), there
is a minterm CL such that min{x(σ) : x ∈ CL} = UB . In particular, CL is an active
minterm of value UB , with CL\Y ⊆ P (by the choice of y).

The other direction is considerably simpler. If there is an active minterm CL of value
at least UB such that CL\Y ⊆ P then assigning UB to each variable in P ⊇ CL\Y
makes CL evaluate to UB , which in turn raises the lower bound to UB , thus forcing
the game tree to evaluate to UB .

(3): Let LB < y < UB and suppose that P is a proof of y for TY w.r.t. an assign-
ment σP of values to the variables in P . Similarly as above, let LB ≤ y′ < y , and
consider the assignment σ′ that agrees with σP on the variables in P and assigns y′ to
the variables in V \(Y ∪P ). By the assumption on P , TY evaluates to y on σ′, or, equiv-
alently, T evaluates to y on the assignment σ composed of σY and σ′. By equation (4),
there is a minterm CL such that min{x(σ) : x ∈ CL} = y. Then, CL is an active
minterm of value yL ≥ y, with CL\Y ⊆ P . Similarly, there is an active maxterm CU

of value yU ≤ y, with CU\Y ⊆ P .
For the converse direction, suppose that there is an active minterm CL of value

yL and an active maxterm CU of value yU such that LB < yU ≤ y ≤ yL < UB
and such that (CL ∪ CU )\Y ⊆ P . Since CL and CU are active, the sets CL\Y and
CU\Y are nonempty. Consider the assignment σP that assigns y to the variables in
P ⊇ (CL\Y ) ∪ (CU\Y ). This makes CL evaluate to y, which implies T (σ) ≥ y for
every assignment σ that simultaneously extends σY and σP . At the same time, CU gets
evaluated to y, which implies T (σ) ≤ y. Therefore, the value of the restricted game
tree TY ∪P is constantly equal to y, proving that P is a proof of y for TY . ut

For z ∈ RV , we denote ‖z‖1 =
∑

x∈V |z(x)|.

Lemma 4 There is a solution sY to the LPTY such that ‖sY ‖1 ≤ max{k(T ), l(T )} .
Moreover, such a solution can be found in polynomial time.

Proof. We split the proof into two cases, according to the value of UB .
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Case 1. No maxterm has been completely evaluated yet (UB = ∞). In particular, all
the maxterms are active, and there are no minterm proofs. Let HU be a minimal hitting
set of the family {CU\Y : CU is an active maxterm}, and let sY be the characteristic
vector of HU . We claim that this sY is a solution with the desired properties. Indeed,
since there are no minterm proofs, all the minimal proofs contain a member of the
family {CU\Y : CU is an active maxterm}, which implies that sY is a feasible solution
to the linear program LPTY

. Furthermore, it was shown in [3] that every minimal
hitting set of the family {CU\Y : CU is an active maxterm} is contained in a minterm
of T . Hence ‖sY ‖1 = |HU | ≤ k(T ).
Case 2. There is a completely evaluated maxterm (UB < ∞). In this case, let P1

denote the family of all minimal minterm proofs, and let P2 denote the family of all
(CU\Y )-parts of the other (i.e., maxterm and combined) minimal proofs. By Lemma 2,
the families P1 and P2 are nonempty.
Claim.

(i) max{|P | : P ∈ P1 ∪ P2} ≤ max{k(T ), l(T )}.
(ii) Every member of P1 intersects every member of P2.

Proof of Claim. Part (i) follows from the observations that every element of P1 is con-
tained in a minterm, and every element of P2 is contained in a maxterm.

We prove (ii) by contradiction. Suppose that there is a minimal minterm proof
CL

0 \Y and a minimal non-minterm proof (CL
1 \Y )∪(CU

1 \Y ), with (CU
1 \Y ) nonempty

and (CL
1 \Y ) possibly empty, such that (CL

0 \Y ) ∩ (CU
1 \Y ) = ∅. Let y be the value

of CU
1 . Then, by the above characterization of minimal proofs, y < UB .

Consider the partial assignment σ that extends the current assignment σY by setting
all the leaves of CL

0 \Y to UB , and all the leaves of CU
1 \Y to y. Then, the minterm CL

0

proves that the value of T at σ is at least UB , while the maxterm CU
1 proves that the

value of T at σ is at most y < UB . This is a contradiction, and the proof of the claim is
complete.

We recall the following result implicitly contained in [6].

Theorem 4 ([6]) LetA1,A2 be two nonempty set families over V such that X∩Y 6= ∅,
for each X ∈ A1 and each Y ∈ A2. Then, there is a feasible solution s to the linear

program

{
Minimize ‖s‖1 s.t.

∑

x∈A

s(x) ≥ 1 ∀A ∈ A1 ∪ A2, and s(x) ≥ 0 ∀x ∈ V

}

such that ‖s‖1 ≤ max{|A| : A ∈ A1 ∪ A2} .

In conjunction with the above claim, this theorem implies that there is a feasible
solution sY to the linear program
{

Minimize ‖sY ‖1 s.t.
∑

x∈P

sY (x) ≥ 1 ∀P ∈ P1 ∪ P2, and sY (x) ≥ 0 ∀x ∈ V \Y
}

such that ‖sY ‖1 ≤ max{k(T ), l(T )} .
It remains to show that sY is a feasible solution to LPTY

. But this follows from the
fact that every minimal proof of TY contains a member of P1 ∪ P2.

This concludes Case 2 and completes the proof of the existence of the desired solu-
tion sY .
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We now present a polynomial-time algorithm that computes the solution sY de-
scribed in Lemma 4.

Since game trees are monotone functions, the value of UB can be computed in
linear time by a single bottom-up traversal of the tree, in the same manner as the game
tree T would be evaluated—with the exception that infinite values are allowed. More
precisely, we have UB = T (σU ) ∈ R∪ {∞}, where σU is the assignment that extends
σY by assigning to every unevaluated leaf the value ∞.

If we are in Case 1, then we compute the set HU in linear time by a single bottom-
up traversal of the tree, as follows. We associate to each node x of T a set H(x) ⊆ V .

If x is a leaf, then let H(x) = {x}\Y . For an internal node x, let C(x) denote the
set of children of x.

If x is a MAX node, then let

H(x) =
{∅, if H(y) = ∅ for all y ∈ C(x);

H(y), where y ∈ C(x) such that H(y) 6= ∅ otherwise.

If x is a MIN node, then let

H(x) =
{∅, if ∃y ∈ C(x) such that H(y) = ∅;
∪{H(y) : y ∈ C(x)}, otherwise.

For every node x of the game tree, let FU
x denote the set of maxterms of the game

tree defined by the subtree of T rooted at x. Moreover, let FU
Y (x) denote the set of

all inclusion-wise minimal sets in the set {CU\Y : CU ∈ FU
x }. It can be proved by

induction on the height of the subtree rooted at x that for each node x of T ,

H(x) =
{

a minimal hitting set of FU
Y (x), if FU

Y (x) 6= {∅};
∅, otherwise.

Clearly, the desired set HU is then given by H(r) where r is the root of T .

If we are in Case 2, then we will show how to compute in polynomial time an
optimal solution sY to the linear program
{

Minimize ‖sY ‖1 s.t.
∑

x∈P

sY (x) ≥ 1 ∀P ∈ P1 ∪ P2, and sY (x) ≥ 0 ∀x ∈ V \Y
}

.

As shown above, such a solution will be feasible for LPTY
and will satisfy ‖sY ‖1 ≤

max{k(T ), l(T )} .
There could be exponentially many constraints in this linear program. Nevertheless,

we will show that the separation problem can be solved in polynomial time. Using the
ellipsoid method, an optimal solution to the above linear program can be found with
only polynomially many calls to the separation oracle [12].

Let sY be a rational vector in RV \Y . We may assume that sY (x) ≥ 0 for every
x ∈ V \Y , for otherwise we have a separating hyperplane.

To verify whether
∑

x∈P sY (x) ≥ 1 for every P ∈ P1∪P2, we proceed as follows.
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First, we compute the value of α := min{∑x∈P sY (x) : P ∈ P1}, together
with a P ∈ P1 such that

∑
x∈P sY (x) = α. If α < 1, we output the character-

istic vector of P as a separating hyperplane. Otherwise, we compute the value of
β := min{∑x∈P sY (x) : P ∈ P2}, and proceed similarly.

The following observations show that these computations can be carried out in poly-
nomial time.

LetFL
≥UB denote the set of minterms of T of value at least UB . Similarly, letFU

<UB

denote the set of maxterms of T of value less than UB . Then:

– α = min{∑x∈CL\Y sY (x) : CL ∈ FL
≥UB};

β = min{∑x∈CU\Y sY (x) : CU ∈ FU
<UB}.

This follows directly from the definitions of α, β and the two families P1, P2.
– For every w : V → R∪{∞}, a minterm C ∈ FL minimizing w(C) :=

∑
x∈C w(x)

over all minterms can be computed in polynomial time. Similarly, a maxterm C ∈
FU minimizing w(C) over all maxterms can be computed in polynomial time.
Using the recursive structure of the minterms (maxterms), it is easy to see that
such a minterm (maxterm) can be computed in linear time by a single bottom-up
traversal of the tree T .

– A minterm CL ∈ FL
≥UB of T that minimizes the quantity

∑
x∈CL\Y sY (x) over all

C ∈ FL
≥UB can be computed in polynomial time.

This follows from the previous observation, by defining w : V → R ∪ {∞} as
follows:

w(x) =





sY (x), if x ∈ V \Y
0, if x ∈ Y and σY (x) ≥ UB ;
∞, otherwise.

Let CL be a minterm minimizing w(CL). Since the set FL
≥UB is nonempty, and

w(C) is finite precisely for C ∈ FL
≥UB , the minterm CL must belong to FL

≥UB .
But clearly, for all C ∈ FL

≥UB , we have w(C) =
∑

x∈C w(x) =
∑

x∈C\Y sY (x).
– A maxterm CU ∈ FU

<UB of T that minimizes the quantity
∑

x∈CU\Y sY (x) over
all C ∈ FU

<UB can be computed in polynomial time.
This statement can be proved in a similar manner.

This concludes the description of the polynomial-time separation procedure, and with
it the proof of the lemma. ut

The following result follows from Lemmas 1 and 4 and Theorem 3.

Corollary 1 Let T be a game tree, and let r ≥ 1. If each certificate of T has size at
least 2 then γr(T ) = r · max{k(T ), l(T )} − r + 1 . Moreover, there is a polynomial
time algorithm for evaluating game trees each certificate of which has size at least 2
with optimal r-extremal competitiveness, for each r ≥ 1.

In the case when not all the certificates of T are of size at least 2, it is possible to im-
prove the upper bound. We let p(T ) (q(T )) denote the number of minterms (maxterms)
of T of size 1.
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Theorem 5 Let T be a game tree with at least two leaves. If p(T ) ≥ 1, then γr(T ) =
r·max{k(T ), l(T )−p(T )}−r+1. Similarly, if q(T ) ≥ 1, then γr(T ) = r·max{k(T )−
q(T ), l(T )} − r + 1.

The following two lemmas provide the matching bounds.

Lemma 5 Let T be a game tree with at least two leaves. If p(T ) ≥ 1 (and then q(T ) =
0), then γr(T ) ≥ r ·max{k(T ), l(T )−p(T )}− r +1. Similarly, if q(T ) ≥ 1 (and then
p(T ) = 0), then γr(T ) ≥ r ·max{k(T )− q(T ), l(T )} − r + 1.

Proof. We shall only prove that if p(T ) ≥ 1, then γr(T ) ≥ r · max{k(T ), l(T ) −
p(T )} − r + 1. The proof of the other inequality is similar.

For simplicity, let us write p = p(T ) and l = l(T ). Let p ≥ 1. First, note that
the inequality γr(T ) ≥ r(k(T ) − 1) + 1 is proved exactly the same as in the proof of
Theorem 1.

It remains to prove γr(T ) ≥ r(l − p − 1) + 1. Note that, since every maxterm
intersects every minterm, we have l ≥ p. If l = p, the inequality holds true. Assume
now that l > p. Let X ⊆ V denote the set of leaves of T that correspond to the
minterms of size 1, and let C be a largest maxterm of T . Then X is a proper subset
of C.

Consider an algorithm A for evaluating T . We construct an assignment σA which
is ‘bad’ for A. For x ∈ C\X , we set c1(x) = 1, and c0(x) = r. For x 6∈ C\X , we
set c1(x) = c0(x) = 0. For all variables in C\X but the last one read by A we set
σA(x) = 0. All the other variables are set to 1. The algorithm spends r(|C|−p−1)+1
to prove that T (σA) = 1. In fact, since C is a maxterm, A cannot conclude that T
evaluates to 1 before reading all variables in C. On the other hand, it is easy to see that
the cheapest proof costs exactly 1. Thus, γr(T ) ≥ r(l − p − 1) + 1 and the proof is
complete. ut

Lemma 6 Let T be a game tree with at least two leaves. If p(T ) ≥ 1, then γr(T ) ≤
r·max{k(T ), l(T )−p(T )}−r+1. Similarly, if q(T ) ≥ 1, then γr(T ) ≤ r·max{k(T )−
q(T ), l(T )} − r + 1.

Proof. We shall show the first statement only: if p := p(T ) ≥ 1, then γr(T ) ≤ r ·
max{k(T ), l(T )− p} − r + 1. The other statement can be proved similarly.

First, consider the case when T is of the form T = max{x1, . . . , xp}. Then, every
algorithm must query all the variables in order to evaluate T , and γr(T ) = 1 (indepen-
dently of r).

Otherwise, T can be written in the form T = max{x1, . . . , xp, T
′} where T ′ is

a game tree over V ′ := V \{x1, . . . , xp}. By Lemma 1, it is sufficient to show that
there is an implementation LP of the LPA∗ such that, for each subset Y ⊂ V of
queried variables, the solution sY (·) to the LPTY

chosen by the LP satisfies ‖sY ‖1 ≤
max{k(T ), l(T )− p} .

For Y = ∅, we let LP choose s∅ as the characteristic vector of the singleton {x1}.
It is easy to see that s∅ is a feasible solution to LPT such that ‖s∅‖1 = 1. Then, LP
reads the variable x1 (setting Y = {x1}), and proceeds in the same manner: when
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Y = {x1, . . . , xi}, for 1 ≤ i < p, we let LP choose sY ∈ RV \Y as the characteristic
vector of the singleton {xi+1}.

When Y = {x1, . . . , xp}, the restricted function is of the form

TY = max{C, T ′} ,

where C = max1≤i≤p{xi(σ)}. Moreover, C is a lower bound on the function’s value.
It is easy to see that, for every Y ′ ⊆ V such that {x1, . . . , xp} ⊆ Y ′, and every

corresponding assignment σY ′ , any active minterm of T ′ is an active minterm of T , and
vice versa, and any active maxterm of T ′ is the intersection of an active maxterm of T
with the set V ′, and vice versa. Thus, one can use the same approach as in the proof of
Lemma 4 to show that there is a solution sY ′ to the LPTY′ such that

‖sY ′‖1 ≤ max{k(T ′), l(T ′)} = max{k(T ), l(T )− p} .

This concludes the proof. (The proof assumed that all costs were positive. The proof
could easily be modified to take care of the zero costs as well. The variables with zero
costs would be queried before the others, and the solutions sY could be chosen so to
assure that any variable with positive cost from the set {x1, . . . , xp} is queried before
any variable with positive cost from the set V \{x1, . . . , xp}. Then, the same arguments
as above would apply.) ut

The following theorem summarizes our findings on the (r-)extremal competitive-
ness for game trees.

Theorem 6 Let T be a game tree. Then

γ(T ) =
{

max{k(T ), l(T )}, if p(T ) = q(T ) = 1;
max{k(T )− q(T ), l(T )− p(T )}, otherwise.

Furthermore, for each r ≥ 1, we have γr(T ) = r·γ(T )−r+1, and there is a polynomial
time algorithm for evaluating game trees with optimal r-extremal competitiveness, for
each r ≥ 1.

5 Concluding Remarks

We believe that the value dependent cost model deserves further investigation, as called
by its applications in several situations, particularly in the medical setting. The study of
this model with respect to the γc competitiveness is a main direction for continued re-
search. Remarkably, already the situation of AND/OR tree functions, whose certificates
have a simpler structure than those of the game trees, seems to be challenging. We also
remark that the existence of an optimal γc-competitive algorithm for game tree function
is still an open problem even in the more classical value independent cost model.

Acknowledgment. We are grateful to Mike Paterson for suggesting to us the idea of
studying the value dependent cost model.
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