Perfect codes in direct graph bundles

Janez Žerovnik

Institute of Mathematics, Physics and Mechanics, Ljubljana and FME, University of Ljubljana, Ljubljana

based on joint work with Irena Hrastnik, University of Maribor

/⊒ ► < ∃ ►

Outline of the presentation

- Introduction
- The result
- Basic notions "Preliminaries"
- Proof sketch ... ?

1.1.1.1.1.1.1.1.1.1			
Introduction	Outline	Preliminaries - direct graph bundles	Preliminaries - Perfect codes

- Introduction
 - general motivation error correcting codes
 - related work
 - Biggs [1973]
 - some later references: Livingston and Stout [90], Kratochvíl [91,94], Hedetniemi, McRae and Parks [98], Cull and Nelson [99], Jha [02,03], Klavžar, Milutinović and Petr [02], Jerebic, Klavžar and Špacapan [05], Klavžar, Špacapan, and Žerovnik [2006]

Introduction	Outline	Preliminaries - direct graph bundles	Preliminaries - Perfect codes
Introducti	o.n		

- general motivation error correcting codes
 - related work
 - Biggs [1973]
 - some later references: Livingston and Stout [90], Kratochvíl [91,94], Hedetniemi, McRae and Parks [98], Cull and Nelson [99], Jha [02,03], Klavžar, Milutinović and Petr [02], Jerebic, Klavžar and Špacapan [05], Klavžar, Špacapan, and Žerovnik [2006]
 - my motivation CAN "a complete description of perfect codes in the direct product of cycles" [—, Advances in applied math. 2008] BE GENERALIZED ... TO GRAPH BUNDLES ?

The result for product of cycles:

Theorem [Jha02-03 (n = 2), **[JKŠ05]** (n = 3), **[KŠŽ06]**, **[Z08] (general case)]:** Let $G = \times_{i=1}^{n} C_{\ell_i}$ be a direct product of cycles. For any $r \ge 1$, and any $n \ge 2$, each connected component of G contains a so-called canonical *r*-perfect code provided that each ℓ_i is a multiple of $r^n + (r+1)^n$. (And, for other ℓ_i no perfect codes are possible).

New result for product of bundles :

Theorem [Hrastnik and —, **to appear]** : Let $r \ge 1$, $m, n \ge 3$, and $t = (r+1)^2 + r^2$. Let $X = C_m \times^{\sigma_\ell} C_n$ be a direct graph bundle with fibre C_n and base C_m . Then each connected component of X contains an r-perfect code if and only if n is a multiple of t, m > r, and ℓ has a form of $\ell = (\alpha t \pm ms) \mod n$ for some $\alpha \in \mathbb{Z}$.

Theorem [Hrastnik and —, to appear] : There is no *r*-perfect code of (a connected component of) direct graph bundle $C_m \times^{\alpha} C_n$ where α is reflection.

Preliminaries

- direct product of graphs, $G \times H$
- nodes: $V(G) \times V(H)$
- edges: $(a, b) \sim ((c, d) \iff (a \sim c \text{ and } b \sim d)$ example;

▲ 同 ▶ → 三 ▶

Preliminaries, conectivity

- connectivity of direct product of cycles
- $G = \times_{i=1}^{n} C_{\ell_i}$ is connected \iff at most one of the ℓ_i 's is even.

- Connectivity of direct graph bundles (of cycles over cycles) : DEPENDS on
 - parity of ℓ_1 and ℓ_2 AND
 - the automorphism (\Rightarrow next slide)

Outline

Preliminaries, connectivity cont.

Table: Connected direct graph bundles $C_m \times^{\alpha} C_n$

n odd	for any a	for any automorphism α of C_n										
n even	<i>m</i> odd	$\alpha = id$										
		$lpha=\sigma_\ell$, ℓ is even										
		$\alpha = \rho_2$										
	m even	$lpha=\sigma_\ell$, ℓ is odd										
		$lpha= ho_0$										

< E.

Outline

Preliminaries, connectivity cont.

Automorphisms of a cycle are of two types:

- A cyclic shift of the cycle by ℓ elements, denoted by σ_ℓ, 0 ≤ ℓ < n, maps u_i to u_{i+ℓ} (indices are modulo n).
- \bullet (As a special case we have the identity ($\ell=0).$)
- Other automorphisms of cycles are reflections. Depending on parity of *n* the reflection of a cycle may have one, two or no fixed points.

NOTATION : $C_m \times^{\alpha} C_n$

Graph bundles

Definition

Let B and F be graphs. A graph G is a direct graph bundle with fibre F over the base graph B if there is a graph map $p: G \to B$ such that for each vertex $v \in V(B)$, $p^{-1}(\{v\})$ is isomorphic to F, and for each edge $e = uv \in E(B)$, $p^{-1}(\{e\})$ is isomorphic to $F \times K_2$. Outline

Graph bundle - another definition

• Start with graph *B*.

< ∃ →

∃ >

- Start with graph *B*.
- Replace each vertex of B with a copy of F.

- Start with graph B.
- Replace each vertex of B with a copy of F.
- For any pair of adjacent copies of *F* add edges to get a product *K*₂ × *F*.

- Start with graph B.
- Replace each vertex of B with a copy of F.
- For any pair of adjacent copies of F add edges to get a product $K_2 \times F$.

- Start with graph B.
- Replace each vertex of B with a copy of F.
- For any pair of adjacent copies of F add edges to get a product $K_2 \times F$.

- Start with graph B.
- Replace each vertex of B with a copy of F.
- For any pair of adjacent copies of *F* add edges to get a product *K*₂ × *F*.

Another point of view: assign authomorphisms to (directed) edges of B ...

Graph bundles also appear as computer topologies. (This one is CARTESIAN graph bundle, but very famous.) A well known example is the twisted torus - *ILIAC IV architecture* on the Figure.

Figure: Twisted torus: Cartesian graph bundle with fibre C_4 over base C_4

Cartesian graph bundle with fibre C_4 over base C_4 is the ILLIAC IV architecture, a famous supercomputer that inspired some modern multicomputer architectures.

 see G.H. Barnes, R.M. Brown, M. Kato, D.J. Kuck, D.L. Slotnick, R.A. Stokes, The ILLIAC IV Computer, *IEEE Transactions on Computers*,

Preliminaries - Perfect codes

• set $C \subseteq V(G)$ is an *r*-code in *G* if $d(u, v) \ge 2r + 1$ for any two distinct vertices $u, v \in C$.

 C is an r-perfect code if for any u ∈ V(G) there is exactly one v ∈ C such that d(u, v) ≤ r.

• **OR:** $C \subset V(G)$ is an *r*-perfect code if and only if the *r*-balls B(u, r), where $u \in C$, form a partition of V(G).

• Abbreviation: s = 2r + 1

Introduction

Preliminaries - Perfect codes

direct grid - with edges

《曰》《聞》《臣》《臣》

æ

Preliminaries - Perfect codes

direct grid - base vectors

۹	0	۲	0	۲	0	۲	0	۰	0	۰	0	۰	0	۰	0	•	0	0	0	۰	0	۲	0	۲	0	۲
0	۲	0	۲	0	۲	0	۲	0	0	0		0	0	0	0	0	0	0	0	0	۰	0	۲	0	۲	0
۰	0	۲	0	۲	0	۲	0	۲	0	•	0	0	0	0	0	0	0	0	0	۰	0	•	0	۰	0	۲
0	۲	0	۲	0	۲	0	۲	0	•	0	•	0	0	0		0	0	0	۲	0	۰	0	۲	0	۲	0
۲	0	۲	0	۲	0	۲	0	۲	0		0		0	0	0		0	•	0	۲	0	•	0	۲	0	۲
0	۲	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	۲	0
•	0	۲	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	۲
0	۲	0	۲	0	۲	0	۲	0	0	0	0	0	•	0	0	0	0	0	0	0	۰	0	۰	0	۲	0
۲	0	۲	0	۲	0	۲	0	0	0	0	0	0	0	0	0	0	0	0	0	۰	0	۰	0	۰	0	۲
0	۲	0	۲	0	۲	0	۲	0	0	0	0	0	0	0	0	0	0	0	0	0	۰	0	۲	0	۲	0
۲	0	۲	0	۲	0	۰	0	Ж	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	۲	0	۲
0	۲	0	۲	0	۲	0	0	ી	0	0	0	0	•	0	0	0	0	0	0	0	۰	0	۲	0	۲	0
۲	0	۲	0	۲	0	۲	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	۰	0	۰	0	۲
0	۲	0	۲	0	۲	0	۲	0	0	0	0	0	0	0	0	0	0	0	0	0	۰	0	۲	0	۲	0
۲	0	۲	0	۲	0	۲	0	0	þ	0	0	0	0	≯	0	0	0	0	0	۰	0	۲	0	۰	0	۲
0	۲	0	۲	0	۲	0	0	0	٢	0	0	0	•	0	0	0	0	0	0	0	۰	0	۲	0	۲	0
۲	0	۰	0	۲	0	۰	0	0	0	0	0	0	0	0	0	0	0	0	0	۰	0	۰	0	۲	0	۲
0	۲	0	۲	0	۲	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	۰	0	۰	0	۲	0
۲	0	۰	0	۰	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	۰	0	۲
0	۲	0	0	0	۲	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	۰	0	۰	0	۲	0
۲	0	۰	0	۰	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	۰	0	۲
0	۲	0	۰	0	۰	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	•	0	0	0	۰	0
•	0	۲	0	۲	0	۲	0	۲	0		0	0	0	۲	0	۲	0		0	۰	0	۲	0	۲	0	۲

canonical local structure : (s, 1), (-1, s) (here s = 2r + 1, r = 2)

э

direct grid - neighborhoods

2-neighborhood has 1+4+8=13 vertices

Introduction

æ

_ र ≣ ≯

▲圖 ▶ ▲ 圖 ▶

direct grid - the tilling

۲	0	۲	0	۰	0	۰	0	•	0	۰	0	۲	0	۲	0	۲	0	۰	0	0	0	•	0	۰	0	0
0	۲	0	۲	0	0	0		0	۰	0	۲	0	۲	0	۲	0	۲	0		0		0	0	0	۲	0
۲	0	۲	0	۰	0		0		0		0	۲	0	۲	0	۲	0		0		0		0	0	0	0
0	۲	0	۲	0		0		0	۰	0	۲	0	۲	0	۲	0	۲	0		0		0		0	۲	0
0	0	۲	0	۲	0	0	0	0	0	0	0	0	0	0	0	۲	0	0	0		0	0	0	0	0	0
0	۲	0	۲	0	•	0		0	۰	0	۲	0	•	0	۲	0	۲	0	۲	0		0	•	0	۰	С
۲	0	۲	0	۲	0	•	0	•	0	•	0	۲	0	۹	0	۲	0	۲	0		0		0	•	0	G
0	۲	0	۲	0	۲	0	۲	0	۲	0	•	0		0	۲	0	۲	0	۲	0	•	0	•	0		С
۲	0	۲	0	۲	0	•	0		0	•	0	۰	0	۲	0	۰	0	۲	0	•	0	•	0	•	0	Ø
0	۰	0	0	0	0	0	0	0	•	0	0	0	*	0	۲	0	۰	0	0	0	0	0	0	0	0	С
0	0	0	0	0	0	0	0	Ж	0	0	0	•	9	0	0	0	0	0	0	0	0	0	0	0	0	0
0	۲	0	0	0	0	0	0	9	•	0	•	0	0	0	۲	0	0	0	0	0	0	0	0	0	۲	С
۲	0	۲	0	۲	0	0	0	0	0	•	0	۰	0	0	0	۲	0	0	0	0	0	0	0	۰	0	0
0	۲	0	۲	0	0	0	0	0	•	0	0	0	•	þ	۲	0	۰	0	0	0	0	0	0	0	۲	С
۲	0	۲	0	۲	0	0	0	0	þ	•	0	0	0.	≯	0	۲	0	0	0	0	0	0	0	0	0	0
0	۲	0	۲	0		0		0	8	0	0	0	۲	0	۲	0	۲	0		0		0	•	0	۲	С
۲	0	۲	0	۲	0		0		0		0	۰	0	۲	0	۲	0	۲	0		0		0		0	0
0	۲	0	۲	0	•	0	•	0	۰	0	•	0	0	0	۲	0	۲	0		0	•	0		0	۰	С
•	0	۲	0	۲	0		0		0		0	۰	0	0	0	۲	0	۲	0	•	0	•	0	•	0	G
0	0	0	0	0	0	0	0	0	•	0	0	0	0	0	۲	0	۲	0	0	0	0	0	0	0	0	С
0	0	۲	0	۰	0	•	0	•	0	Θ	0	۲	0	۲	0	۲	0	•	0	•	0	۲	0	0	0	0
0	۲	0	0	0	0	0	0	0	•	0	0	0	0	0	۲	0	0	0	0	0	0	0	0	0	0	С
•	0	۲	0	۲	0		0	0	0		0	۲	0	۲	0	۲	0	0	0	0	0	•	0	۲	0	0

Preliminaries, cont.

- $\bullet~$ 2D product :
 - embedding of the product into a torus
 - area of the torus
 - the tilling covers the area twice

Preliminaries, cont.

- 2D product :
 - embedding of the product into a torus
 - area of the torus
 - the tilling covers the area twice

- bundle:
 - "twisted" torus
 - check the "JOIN"
 - TAKE CARE !!! double cover

- cut the torus
- recall that a perfect code is determined by any two of its elements
- check if it extends consistently

for details see [Information Processing Letters., to appear]

References

N. Biggs, Perfect codes in graphs, J. Combin. Theory Ser. B 15 (1973) 289-296.

M. Cesati, Perfect Code is W[1]-complete, Inf. Process. Lett. 81 (2002) 163–168.

R. Erveš, J. Žerovnik, Mixed fault diameter of Cartesian graph bundles, Discrete Appl. Math. 161(12) (2013) 1726–1733.

I. Hrastnik Ladinek, J. Žerovnik, Perfect codes in direct graph bundles, Information Processing Letters, to appear. doi:10.1016/j.ipl.2015.03.010

J. Jerebic, S. Klavžar, S. Špacapan, Characterizing r-perfect codes in direct products of two and three cycles, Inf. Process. Lett. 94(1) (2005) 1–6.

P. K. Jha, Perfect *r*-domination in the Kronecker product of three cycles, IEEE Trans. Circuits Systems-I: Fundamental Theory Appl. 49 (2002) 89–92.

P. K. Jha, Perfect *r*-domination in the Kronecker product of two cycles, with an application to diagonal toroidal mesh, Inf. Process. Lett. 87 (2003) 163–168.

- S. Klavžar, S. Špacapan, J. Žerovnik, An almost complete description of perfect codes in direct products of cycles, Adv. in Appl. Math. 37 (2006) 2–18.
- J. Žerovnik, Perfect codes in direct products of cycles a complete characterization, Adv. in Appl. Math. 41 (2008) 197–205.

(日) (同) (三) (三)

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Thank you! ... Questions ?

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Thank you! ... Questions ?