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Tree-cut width proposed by Paul Wollan, 2013



_ % a3
Tree-cut Wl( « QQ
M < - :-‘\:; _-.::‘ -
Pt - - 2
Eonco o % ‘
- . - 4
. 2 N - g v ) -
;d_‘.“t. e -a@-v; ’ ’}'"? ,«“_‘ N |
— > e e SE_ERS . ~ :
. - Aok S =
M = ‘\\“. - \\\ -4 - '_ _— - -
o S - ~ . S . e
— PO ‘f:.:‘:}:" = _"\.\‘ — ,’.'\-; >
..... - e _ﬁ-’ .'(‘ I

Algor1thm1c application of tree-cut W1dth
joint-work with Robert Ganian and Stefan Szeider.
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1ree-cul decomposition

Marx&Wollan 2014, Wollan 2015

(T, x={Xt, t € V(T)}) is a tree-cut decomposition of G
if

- T 1s a tree

- x forms a near-partition of V(G)




Iree-cut width: (1) cut

Yv

cut(e) = the set of edges with one point in Yv and another in V(G)-Yv



Tree-cut width: (2) torso

3-edge-connected case

Rt = all neighboring tree nodes of t
| torso(t) | = | Xt|+ | Rt/



Tree-cut width: (3) width

3-edge-connected case

cut(e) = the set of edges with one point in Yv and another in V(G)-Yv

Rt = all neighboring tree nodes of t
| torso(t) | = | Xtl+ | Rt



Tree-cut width: (3) width

3-edge-connected case

width(T,x) = max {| cut(e) |, |torso(t) |}

tcw(G) = min width(T,y)

cut(e) = the set of edges with one point in Yv and another in V(G)-Yv

Rt = all neighboring tree nodes of t
torso(t) = | Xt + | Rt



Tree-cut width: (3) width

general case

tcew(G) = max tcw(Gi)

Gi’s are maximal 3-edge connected subgraphs

cut(e) = the set of edges with one point in Yv and another in V(G)-Yv

Rt = all neighboring tree nodes of t
torso(t) = | Xt + | Rt



Tree-cut width: (4) example

b Q Oc 049
\ f
aC) 9, QO €

d

cut(t) = cut(e) where e=(t,p(t)) width =3



Relations with other width
measures
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Tree-cut width for algorithms?

* Tree decomposition turned out to be a successtul tool for
algorithms design

* How about tree-cut decomposition?
* tw = O(tcw”2): having small tcw is stronger than small tw

+ Intractable problems on graph with small tw may have hope on
graph with small tcw



Algorithmie applications

with Robert Gaman and Stefan Szeider

Parameter
Problem treewidth tree-cut width maz-degree and treewidth
CAPACITATED VERTEX COVER  W([1]-hard!”)  FpT(TEm 9 FPT
CAPACITATED DOMINATING SET  W([1]-hard!”!  FpT(Thm 23) FPT
IMBALANCE Open!?*) FpT(thm 16) FpPTI®)
LisT COLORING W(1]-hard"*  W[1]-hard""= ¥ FpT(O>=®
PRECOLORING EXTENSION W([1]-hard""  W[1]-hard""™ 2% ppT(Ob®
BOOLEAN CSP W(1]-hard®®  W[1]-hard"®™ 2% ppTI[*)

FPT w.r.t. parameter k means there is a f(k)poly(n)-algorithm.
W[1]-hard means f(k)poly(n)-algorithm is unlikely.



Computing a tree-cut
decomposition

+* QUEST: design an algorithm which answers the question exactly

* Given a graph G: produce a tree-cut decomposition of width at
most k or declare that tcw > k.

+ ...and which runs as quickly as possible



* Deciding if tcw < k is NP-complete: from min bisection

* Exact computation: non-uniform, non-constructive
+ Graphs of tcw < k are closed under immersion [Wollan 2015]
+ Graphs are w.q.0. under immersion [N.Robertson, P.D.Seymour 2010]

+* W.Q.O. of immersion implies a finite characterization by forbidden
immersions. [N.Robertson, P.D.Seymour 2010]

* Immersion testing can be done in f(k)poly(n)
[M. Grohe, K.-i. Kawarabayashi, D. Marx, and P. Wollan 2011]

* Approximation

+ 2-approximation in time 22AO(k”2 - logk) - n/2
[by E.].Kim, S.Oum, C.Paul, D.Thilikos, I.Sau 2015]



Computing a tree-cut
decomposition

approximately
+* QUEST: design an algorithm which answers the question exaetls:

+ Given a graph G: produce a tree-cut decomposition of width at
grap p p

most ¥ or declare that tcw > k.
2k

+ ...and which runs as quickly as possible.



Sketch of our algorithm

- Find a random cut (A,B) of size < 2k
- This corresponds to a decomposition

- Currently, too large bags.
- Idea: “Grow” the tree,
“Reduce” the bag sizes.




Sketch of our algorithm

- Find a partition of A meeting a set
of conditions (*)
- If such a partition exists - refine A
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Sketch of our algorithm

Find a partition of A such that
- cut (AL, ANAl) <k, i€ {1,2,3]
-cut (AL,B) <k

- |AO| + number of parts < k




Sketch of our algorithm

Find a partition of A such that
- cut (AL, ANAl) <k, i€ {1,2,3]
e LA U e |

- number of parts < k

—> each part Ai has < k”terminals”
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Algorithm for Star-Cut

+ Fact

- tw < 3t : :
B el [teratively solve Star-cut to refine JErRSeRERE

the initial tree-cut decomposition.

* Algorithn The entire routine runs in
1. Run Bo el

‘ A Aoy ‘
2. Dynam k”?O(k”2) - n - n nost 15k”2
- for each of 15k”2 vertices, guess ‘i’ s.t. v belongs to Ai

- keep track of #cut (Ai,A\Ai) and #terminals in Ai
- runtime: k”\(bagsize) * n




Tree-cut width vs treewidth

* Can the above algorithm be improved? DP can be improved?
* tw = O(tcw”2): in fact the binding function is tight.

* There is an infinite family of graphs whose tree-cut width is w, and
treewidth is Q(tcw”/2).



Graphs with tw=Q(tew”2)

We want to build a graph with tree-cut width w+1

-
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...which looks as simple as possible, while its treewidth is as large as
possible.




Graphs with tw=Q(tew"2)

0, (1,1)(1,)(3)(174)
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Graphs with tw=Q(tew"2)

cliques on w vertices

(1)
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Proving lower bound for tw

+ Bramble B of G: a collection of connected subgraph of G, mutually
“touching” each other, i.e. intersecting or adjacent.

+ Order of Bramble B: minimum size of a hitting set

* THM [Seymour and Thomas 93]: tw > order of any bramble - 1

+ Goal: construct a bramble whose order is w2 /100



Our bramble B: Vi €[w], Vset C [w]\1i of size w/2,
B contains the induced graph on {(i,j)(j,1): jE set}

- each, connected? Vv

- mutually touching? ¢

- needs at least w2 /100 to hit all of( them?
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Let X be a hitting set < w”2/100

What if X is randomly distributed...
In real life:

11277
1

- you can find many rows “i” where still many vertices survive.

141277
1

- among such “i”, you can find one column i* whose common

survivor with row i* is still many.
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Further Questions

+ For problems hard on graphs with small tw:

are there problems showing different computational behavior on
small pw and small tcw? e.g. CDC/CVC and boolean CSP

* Qur algorithms run in time k”poly(k)
Better running time? Or optimal?
further conditions on graphs to accelerate the runtime?

+ 2-approximation runs in w~O(w”2).
Faster algorithm? exact computation?

+ In the end, is tree-cut width an interesting graph



Thanks!



