Tree-cut Width: Computation and
Algorithmie Applications

Eun]ung Kim, CNRS - Paris Dauphine University

AGTAC, Koper, Slovenia
17 June 2015

Tree-cut width proposed by Paul Wollan, 2013

_ % a3
Tree-cut Wl(« QQ
M < - :-‘\:; _-.::‘ -
Pt - - 2
Eonco o % ‘
- . - 4
. 2 N - g v) -
;d_‘.“t. e -a@-v; ’ ’}'"? ,«“_‘ N |
— > e e SE_ERS . ~ :
. - Aok S =
M = ‘\\“. - \\\ -4 - '_ _— - -
o S - ~ . S . e
— PO ‘f:.:‘:}:" = _"\.\‘ — ,’.'\-; >
..... - e _ﬁ-’ .'(‘ I

Algor1thm1c application of tree-cut W1dth
joint-work with Robert Ganian and Stefan Szeider.

~ -

(eescut decomposition
il Oum, Christophe
imitrios Thilikos.

Tree-cut wic nNE=F Eh e

hi—_
<
¢ . :
‘ i
T — e ——
- <
e Ly ’
. £
-] §ro hoodl
=~ g -
.“ “ =
-~ " -
!’" - V-
“I _—
SN

joint-work with === |

1ree-cul decomposition

Marx&Wollan 2014, Wollan 2015

(T, x={Xt, t € V(T)}) is a tree-cut decomposition of G
if

- T 1s a tree

- x forms a near-partition of V(G)

Iree-cut width: (1) cut

Yv

cut(e) = the set of edges with one point in Yv and another in V(G)-Yv

Tree-cut width: (2) torso

3-edge-connected case

Rt = all neighboring tree nodes of t
| torso(t) | = | Xt|+ | Rt/

Tree-cut width: (3) width

3-edge-connected case

cut(e) = the set of edges with one point in Yv and another in V(G)-Yv

Rt = all neighboring tree nodes of t
| torso(t) | = | Xtl+ | Rt

Tree-cut width: (3) width

3-edge-connected case

width(T,x) = max {| cut(e) |, |torso(t) |}

tcw(G) = min width(T,y)

cut(e) = the set of edges with one point in Yv and another in V(G)-Yv

Rt = all neighboring tree nodes of t
torso(t) = | Xt + | Rt

Tree-cut width: (3) width

general case

tcew(G) = max tcw(Gi)

Gi’s are maximal 3-edge connected subgraphs

cut(e) = the set of edges with one point in Yv and another in V(G)-Yv

Rt = all neighboring tree nodes of t
torso(t) = | Xt + | Rt

Tree-cut width: (4) example

b Q Oc 049
\ f
aC) 9, QO €

d

cut(t) = cut(e) where e=(t,p(t)) width =3

Relations with other width
measures

Geewmt
/ \
pathw1d© @e cut w1d>

/ NN

Tree-cut width for algorithms?

* Tree decomposition turned out to be a successtul tool for
algorithms design

* How about tree-cut decomposition?
* tw = O(tcw”2): having small tcw is stronger than small tw

+ Intractable problems on graph with small tw may have hope on
graph with small tcw

Algorithmie applications

with Robert Gaman and Stefan Szeider

Parameter
Problem treewidth tree-cut width maz-degree and treewidth
CAPACITATED VERTEX COVER W([1]-hard!”) FpT(TEm 9 FPT
CAPACITATED DOMINATING SET W([1]-hard!”! FpT(Thm 23) FPT
IMBALANCE Open!?*) FpT(thm 16) FpPTI®)
LisT COLORING W(1]-hard"* W[1]-hard""= ¥ FpT(O>=®
PRECOLORING EXTENSION W([1]-hard"" W[1]-hard""™ 2% ppT(Ob®
BOOLEAN CSP W(1]-hard®® W[1]-hard"®™ 2% ppTI[*)

FPT w.r.t. parameter k means there is a f(k)poly(n)-algorithm.
W[1]-hard means f(k)poly(n)-algorithm is unlikely.

Computing a tree-cut
decomposition

+* QUEST: design an algorithm which answers the question exactly

* Given a graph G: produce a tree-cut decomposition of width at
most k or declare that tcw > k.

+ ...and which runs as quickly as possible

* Deciding if tcw < k is NP-complete: from min bisection

* Exact computation: non-uniform, non-constructive
+ Graphs of tcw < k are closed under immersion [Wollan 2015]
+ Graphs are w.q.0. under immersion [N.Robertson, P.D.Seymour 2010]

+* W.Q.O. of immersion implies a finite characterization by forbidden
immersions. [N.Robertson, P.D.Seymour 2010]

* Immersion testing can be done in f(k)poly(n)
[M. Grohe, K.-i. Kawarabayashi, D. Marx, and P. Wollan 2011]

* Approximation

+ 2-approximation in time 22AO(k”2 - logk) - n/2
[by E.].Kim, S.Oum, C.Paul, D.Thilikos, I.Sau 2015]

Computing a tree-cut
decomposition

approximately
+* QUEST: design an algorithm which answers the question exaetls:

+ Given a graph G: produce a tree-cut decomposition of width at
grap p p

most ¥ or declare that tcw > k.
2k

+ ...and which runs as quickly as possible.

Sketch of our algorithm

- Find a random cut (A,B) of size < 2k
- This corresponds to a decomposition

- Currently, too large bags.
- Idea: “Grow” the tree,
“Reduce” the bag sizes.

Sketch of our algorithm

- Find a partition of A meeting a set
of conditions (*)
- If such a partition exists - refine A

ADHAHAS
A2

(=Xt L&V}

Sketch of our algorithm

Find a partition of A such that
- cut (AL, ANAl) <k, i€ {1,2,3]
-cut (AL,B) <k

- |AO| + number of parts < k

Sketch of our algorithm

Find a partition of A such that
- cut (AL, ANAl) <k, i€ {1,2,3]
e LA U e |

- number of parts < k

—> each part Ai has < k”terminals”

&£ S
\

Algorithm for Star-Cut

+ Fact

- tw < 3t : :
B el [teratively solve Star-cut to refine JErRSeRERE

the initial tree-cut decomposition.

* Algorithn The entire routine runs in
1. Run Bo el

‘ A Aoy ‘
2. Dynam k”?O(k”2) - n - n nost 15k”2
- for each of 15k”2 vertices, guess ‘i’ s.t. v belongs to Ai

- keep track of #cut (Ai,A\Ai) and #terminals in Ai
- runtime: k”\(bagsize) * n

Tree-cut width vs treewidth

* Can the above algorithm be improved? DP can be improved?
* tw = O(tcw”2): in fact the binding function is tight.

* There is an infinite family of graphs whose tree-cut width is w, and
treewidth is Q(tcw”/2).

Graphs with tw=Q(tew”2)

We want to build a graph with tree-cut width w+1

-
kL

...which looks as simple as possible, while its treewidth is as large as
possible.

Graphs with tw=Q(tew"2)

0, (1,1)(1,)(3)(174)

~— < @

(3.4)(3.3)(3.2)(3.1) @3

Graphs with tw=Q(tew"2)

cliques on w vertices

(1)

O 0000000000000 00000 00O
O 0000000000000 0000000 09090
O 0000000000000 00000000 9000

Proving lower bound for tw

+ Bramble B of G: a collection of connected subgraph of G, mutually
“touching” each other, i.e. intersecting or adjacent.

+ Order of Bramble B: minimum size of a hitting set

* THM [Seymour and Thomas 93]: tw > order of any bramble - 1

+ Goal: construct a bramble whose order is w2 /100

Our bramble B: Vi €[w], Vset C [w]\1i of size w/2,
B contains the induced graph on {(i,j)(j,1): jE set}

- each, connected? Vv

- mutually touching? ¢

- needs at least w2 /100 to hit all of(them?
se

b
/
)
.,
/
g
. ,
]
v’
13

Let X be a hitting set < w”2/100

What if X is randomly distributed...
In real life:

11277
1

- you can find many rows “i” where still many vertices survive.

141277
1

- among such “i”, you can find one column i* whose common

survivor with row i* is still many.

0 0000000000000 O0OCGOGEOGOG®OGOSCE VW

® & o

4(,'; o= Lo - v N Lo - v N L o D7 s 2 o — - v N Lo coa - Yz

O 0000000000000 OGO HPH

00000 00O0OGDOGOGOOGOOOO VU H

OBODODUEGUEDDODIPOOOLHOHGEGEE
ODODOLLEGTAEDODODDIDIDOHDLH G

Further Questions

+ For problems hard on graphs with small tw:

are there problems showing different computational behavior on
small pw and small tcw? e.g. CDC/CVC and boolean CSP

* Qur algorithms run in time k”poly(k)
Better running time? Or optimal?
further conditions on graphs to accelerate the runtime?

+ 2-approximation runs in w~O(w”2).
Faster algorithm? exact computation?

+ In the end, is tree-cut width an interesting graph

Thanks!

