
Tree-cut Width: Computation and
Algorithmic Applications

Eun Jung Kim, CNRS - Paris Dauphine University!

AGTAC, Koper, Slovenia!
17 June 2015!

Tree-cut width proposed by Paul Wollan, 2013

Tree-cut width proposed by Paul Wollan, 2013

Algorithmic application of tree-cut width!
joint-work with Robert Ganian and Stefan Szeider.

Tree-cut width proposed by Paul Wollan, 2013

Algorithmic application of tree-cut width!
joint-work with Robert Ganian and Stefan Szeider.

Constructing a tree-cut decomposition!
joint-work with Sang-il Oum, Christophe
Paul, Ignasi Sau and Dimitrios Thilikos.!

Tree-cut decomposition
[Marx&Wollan 2014, Wollan 2015]

(T, χ={Xt, t ∈ V(T)}) is a tree-cut decomposition of G
if!

- T is a tree!
- χ forms a near-partition of V(G)!

Tree-cut width: (1) cut

root
e

u v

cut(e) = the set of edges with one point in Yv and another in V(G)-Yv

Yv

Tree-cut width: (2) torso 
3-edge-connected case

root

t

Rt = all neighboring tree nodes of t!
|torso(t)|= |Xt|+|Rt|

Yv

Tree-cut width: (3) width
3-edge-connected case

root

t

Yv

root
e

u v

Yv

cut(e) = the set of edges with one point in Yv and another in V(G)-Yv

Rt = all neighboring tree nodes of t!
|torso(t)| = |Xt|+|Rt|

Tree-cut width: (3) width 
3-edge-connected case

root

t

Yv

root
e

u v

Yv

cut(e) = the set of edges with one point in Yv and another in V(G)-Yv

width(T,χ) = max {|cut(e)|, |torso(t)|}!
tcw(G) = min width(T,χ)

Rt = all neighboring tree nodes of t!
torso(t) = |Xt|+|Rt|

Tree-cut width: (3) width 
general case

root

t

Yv

root
e

u v

Yv

cut(e) = the set of edges with one point in Yv and another in V(G)-Yv

tcw(G) = max tcw(Gi)!
Gi’s are maximal 3-edge connected subgraphs

Rt = all neighboring tree nodes of t!
torso(t) = |Xt|+|Rt|

Tree-cut width: (4) example

cut(t) = cut(e) where e=(t,p(t))

d
a

b,c

e

f

g
(3,3)

(3,3)

(1,1)

(2,1)
(1,1)

width = 3

Relations with other width
measures

Tree-cut width for algorithms?

✤ Tree decomposition turned out to be a successful tool for
algorithms design!

✤ How about tree-cut decomposition?!

✤ tw = O(tcw^2): having small tcw is stronger than small tw!

✤ Intractable problems on graph with small tw may have hope on
graph with small tcw

Algorithmic applications 
with Robert Ganian and Stefan Szeider

FPT w.r.t. parameter k means there is a f(k)poly(n)-algorithm.!
W[1]-hard means f(k)poly(n)-algorithm is unlikely.!

Computing a tree-cut
decomposition

✤ QUEST: design an algorithm which answers the question exactly!

✤ Given a graph G: produce a tree-cut decomposition of width at
most k or declare that tcw > k.!

✤ …and which runs as quickly as possible

✤ Deciding if tcw ≤ k is NP-complete: from min bisection!

✤ Exact computation: non-uniform, non-constructive!

✤ Graphs of tcw ≤ k are closed under immersion [Wollan 2015]!

✤ Graphs are w.q.o. under immersion [N.Robertson, P.D.Seymour 2010]!

✤ W.Q.O. of immersion implies a finite characterization by forbidden
immersions. [N.Robertson, P.D.Seymour 2010]!

✤ Immersion testing can be done in f(k)poly(n)  
[M. Grohe, K.-i. Kawarabayashi, D. Marx, and P. Wollan 2011]!

✤ Approximation!

✤ 2-approximation in time 2^O(k^2·logk) ·n^2 
[by E.J.Kim, S.Oum, C.Paul, D.Thilikos, I.Sau 2015]

Computing a tree-cut
decomposition

✤ QUEST: design an algorithm which answers the question exactly!

✤ Given a graph G: produce a tree-cut decomposition of width at
most k or declare that tcw > k.!

✤ …and which runs as quickly as possible.

approximately

2k

Sketch of our algorithm

- Find a random cut (A,B) of size ≤ 2k  
- This corresponds to a decomposition

A

B

(T, χ={Xt, t ∈ V(T)})
A

B

- Currently, too large bags.  
- Idea: “Grow” the tree,  
“Reduce” the bag sizes.

Sketch of our algorithm

- Find a partition of A meeting a set  
of conditions (*)  
- If such a partition exists - refine A

B

A

A0A1 A3

A2
(T, χ={Xt, t ∈ V(T)})

A0

B

A1

A2

A3

Sketch of our algorithm

B

A

A0A1 A3

A2

Find a partition of A such that  
- cut (Ai,A∖Ai) ≤ k, i∈ {1,2,3}!
- cut (Ai,B) ≤ k  
- |A0| + number of parts ≤ k

Sketch of our algorithm

Find a partition of A such that  
- cut (Ai,A∖Ai) ≤ k, i∈ {1,2,3}!
- cut (Ai,B) ≤ k  
- number of parts ≤ k

B

A

A0A1 A3

A2

➙ each part Ai has ≤ k“terminals”

Refining a big leaf = Star-Cut Problem

Algorithm for Star-Cut

✤ Fact  
- tw ≤ 3tcw^2 ⇒ if tcw ≤ k, then tw ≤ 3k^2 
- 5-approximation for tw running in time 2^O(tw)・n [Bodlaender et al. 2013]!

✤ Algorithm for Star-Cut  
1. Run Bodlaender’s algorithm: if tw > 5・3k^2, report tcw > k  
2. Dynamic Program on a tree-decomposition of width at most 15k^2  
 - for each of 15k^2 vertices, guess ‘i’ s.t. v belongs to Ai  
 - keep track of #cut (Ai,A∖Ai) and #terminals in Ai  
 - runtime: k^(bagsize)・n

Iteratively solve Star-cut to refine
the initial tree-cut decomposition.  

The entire routine runs in
k^O(k^2)・n・n

Tree-cut width vs treewidth

!

✤ Can the above algorithm be improved? DP can be improved?!

✤ tw = O(tcw^2): in fact the binding function is tight.!

✤ There is an infinite family of graphs whose tree-cut width is w, and
treewidth is Ω(tcw^2).

Graphs with tw=Ω(tcw^2)

We want to build a graph with tree-cut width w+1

…which looks as simple as possible, while its treewidth is as large as
possible.

w-clique w-clique

w-clique

w-clique

w edges

Graphs with tw=Ω(tcw^2)

Graphs with tw=Ω(tcw^2)

cliques on w vertices

w (i,j)

(j,i)

Proving lower bound for tw

✤ Bramble B of G: a collection of connected subgraph of G, mutually
“touching” each other, i.e. intersecting or adjacent.!

✤ Order of Bramble B: minimum size of a hitting set!

✤ THM [Seymour and Thomas 93]: tw ≥ order of any bramble - 1!

✤ Goal: construct a bramble whose order is w^2/100

set

Our bramble B: ∀i ∈[w], ∀set ⊆ [w]\i of size w/2,!
B contains the induced graph on {(i,j)(j,i): j∈ set}

i

i

set

- each, connected?
- mutually touching?

- needs at least w^2/100 to hit all of them?

✔

✔

Let ✗ be a hitting set < w^2/100

i

i

✗

✗

✗

✗ ✗

✗

✗

✗

✗

✗

✗

✗ ✗✗ ✗ ✗✗ ✗ ✗✗ ✗ ✗✗ ✗ ✗✗ ✗ ✗✗ ✗ ✗✗ ✗ ✗

✗ ✗ ✗✗ ✗ ✗✗ ✗ ✗✗ ✗ ✗✗ ✗ ✗✗ ✗ ✗✗ ✗ ✗✗ ✗ ✗

What if ✗ is randomly distributed…
In real life:  

- you can find many rows “i” where still many vertices survive.!
- among such “i”, you can find one column i* whose common

survivor with row i* is still many.

Further Questions

✤ For problems hard on graphs with small tw:  
are there problems showing different computational behavior on
small pw and small tcw? e.g. CDC/CVC and boolean CSP!

✤ Our algorithms run in time k^poly(k)  
Better running time? Or optimal?  
further conditions on graphs to accelerate the runtime?!

✤ 2-approximation runs in w^O(w^2).  
Faster algorithm? exact computation?!

✤ In the end, is tree-cut width an interesting graph

Thanks!

