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Abstract

In this paper, the dual representation of parametric curves is generalized to the
spatial case, and its properties are studied. Rational curves have a polynomial
dual representation, which turns out to be both theoretically and computationally
appropriate to tackle the main goal of the paper: spatial rational Pythagorean-
hodograph curves (PH curves). The dual representation of a rational PH curve
is generated here by a quaternion polynomial which defines the Euler-Rodrigues
frame of a curve. Conditions that imposed on this polynomial assure low de-
gree dual form representation are considered in detail. In particular, a linear
quaternion polynomial leads to cubic or reparameterized cubic polynomial PH
curves. A quadratic quaternion polynomial generates a wider class of rational PH
curves, and perhaps the most useful is the ten-parameter family of cubic rational
PH curves, determined here in the closed form.
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1. Introduction

Polynomial Pythagorean-hodograph curves are characterized by the property
that the Euclidean norm of their hodograph is a polynomial, not a square root of a
polynomial. These curves thus have a rational unit vector field of tangents, rational
offset curves, and a polynomial arc length what makes them an important practical
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tool that finds its applications in robotics, in CAD/CAM systems, in animations,
etc. Polynomial PH curves were introduced in [1] and have widely been studied
since then (see [2] and the references therein). The usual approach to obtain a
polynomial PH curve is to integrate the appropriate hodograph constructed with
the help of the complex or the quaternion polynomials in the plane or in the space
case respectively (see e.g. [2], [3], [4]).

But the natural extension of the PH property to rational curves turned out
to be quite a task, and only few results are known in this direction. The main
obstacle is the fact that the polynomial preimage approach can not be applied here
since the integral of a rational curve is not a rational curve in general. Planar
rational PH curves were derived in [5], and independently in [6]. The suggested
construction determines a planar rational curve as the envelope of a one-parameter
family of tangent lines, given by a rational unit vector field of tangents, and a
rational support function which defines the distance of the tangent line from the
origin. As observed in [5], the introduced dual form of a planar rational PH curve
turns out to be more appropriate from the computational point of view than the
corresponding point representation. Interpolation schemes involving planar PH
curves can be found in [7].

The step to spatial rational PH curves has been carried out in [8] just recently.
The construction of rational space PH curves is presented, and it is further justi-
fied and illuminated from several equivalent geometric viewpoints. Basically, the
approach originates from the implicit curve representation involving the curve bi-
normal direction and a rational function that determines the signed distance of the
osculating plane from the origin. In order to assure the PH property of the curve,
its binormal directions are generated from a rational vector field of unit length
tangents.

In this paper, a further insight into rational spatial PH curves is provided, with
emphasis to their construction in a form that could be used in practical applica-
tions. First of all, since the construction in [8] leads to rational PH curves of a high
degree in general, we borrow the dual form of a planar rational curve from [5].
We show that this curve representation can be naturally extended to the space case,
actually to any dimension setup. The de Casteljau algorithm that evaluates a curve
point in the dual representation turns out simple and efficient too. In the PH case,
the dual form enables one to deal in general with polynomials of a significantly
lower degree as in the curve closed form point representation. The exception is
the cubic case where degrees of both representations are equal. Equipped with
the dual approach, we obtain the dual PH curve form the Euler-Rodrigues frame
in a similar way as already in [8]. The E-R frame is generated by quaternion
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polynomials, and we focus on the question, how one should choose superfluous
parameters to assure that the corresponding dual form would be of a low degree.
Only some, but significant answers are given here. A linear quaternion polyno-
mial gives rise to cubic or reparameterized cubic polynomial PH curves. Based on
a quadratic quaternion polynomial cubic rational PH curves with nonconstant de-
nominator can be constructed. A closed form, depending on ten free parameters,
is presented. This comes somewhat as a surprise since there are no additional free
parameters in comparison to the cubic polynomial case.

The paper is organized as follows. In the next section the dual form of a para-
metric space curve is introduced and its properties with the emphasis on rational
curves analysed. Section 3 introduces rational PH curves with the dual form based
upon E-R frame. The degree of the dual form of a rational PH curve and its re-
duction is considered in Section 4. In the next section curves that arise from a
linear quaternion polynomial are treated. Cubic rational PH curves are derived in
Section 6 together with a few examples. In the end, we discuss possible future
work directions.

2. Spatial curves in dual form

In [8], the key step to the construction of rational PH curves was a nice im-
plicit representation of a parametric curve. Since the approach works in the planar
case too, and it could be extended to more than three dimensions if needed, we
briefly recall it. Let r : [α, β] → R3 be a smooth parametric curve such that
the derivatives r′ and r′′ are linearly independent on the parameter interval [α, β].
Then the corresponding Frenet frame (t,n, b) is well defined for each t ∈ [α, β].
Here, the vectors t, n and b denote the unit tangent, the principal normal and the
unit binormal respectively. Further, a point r(t) can be uniquely recovered as the
intersection of the osculating, the rectifying, and the normal plane at a particular
parameter value t ∈ [α, β]. This gives r as a set of points p ∈ R3 that satisfy the
linear system

b(t)·(p−r(t)) = 0, n(t)·(p−r(t)) = 0, t(t)·(p−r(t)) = 0, t ∈ [α, β]. (1)

If the torsion τ of the curve r does not vanish on [α, β], as observed in [8], the one-
parametric family of linear systems (1) is by Frenet-Serret formulas equivalent to

b(ℓ)(t) · p− (b · r)(ℓ) (t) = 0, ℓ = 0, 1, 2, t ∈ [α, β]. (2)

These systems can further be simplified by any nonzero function ϕ ∈ C 2([α, β])
to

u(ℓ)(t) · p− f (ℓ)(t) = 0, ℓ = 0, 1, 2, t ∈ [α, β], (3)
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where
u := ϕ b, f := ϕ b · r.

Namely, (2) and (3) are equivalent since by the Leibniz rule one has u · p− f
u′ · p− f ′

u′′ · p− f ′′

 =

 ϕ 0 0
ϕ′ ϕ 0
ϕ′′ 2ϕ′ ϕ

 b · p− b · r
b′ · p− (b · r)′
b′′ · p− (b · r)′′

 .

Note that f
ϕ

denotes the signed distance of the osculating plane with the normal
vector u from the origin. If u and f are given, and det(u,u′,u′′) ̸= 0, the curve
r may be determined from (3). Rather then using the closed form solution ([8])
that gives the point representation

r =
1

det(u,u′,u′′)
(f u′ × u′′ + f ′ u′′ × u+ f ′′ u× u′) ,

where × denotes the cross product, we proceed to the construction of curves in
the implicit form (3). The coefficients of the first equation in (3) where ℓ = 0 that
pin down the family of the osculating planes, determine the corresponding curve
uniquely since the second and the third equation of the system (3) follow from the
first one. Following [5] we call them dual coordinates of the parametric curve. In
order to shorten the notation we introduce an imbedding shortcut R × R3 → R4

that will be used throughout the paper,

(u0;u) :=
(
u0; (u1, u2, u3)

T
)
:= (u0, u1, u2, u3)

T .

With u = (u1, u2, u3)
T we order the dual coordinates in the curve dual form L

L := (−f ;u) = (−f, u1, u2, u3)T .

Quite clearly, the dual form L is homogeneous. It determines the same curve if
multiplied by any smooth nonzero function. More generally, let ∼ denote this type
of equivalence between vector fields. Two vector fields Qi : [α, β] → Rd, i = 1, 2,
are equivalent, Q1 ∼ Q2, iff Q1 = ζQ2 for some smooth function ζ that does not
vanish on this interval. Since the dual form is homogeneous, it is convenient to
rewrite the original curve r in a homogeneous form too,

P := (P0, P1, P2, P3)
T ∼ (1; r) , r =

1

P0

(P1, P2, P3)
T , P0 ̸= 0. (4)
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Relations between P and L could be written in a very compact form. Let . ∧ . ∧ .
denote a particular wedge product, defined as

v1 ∧ v2 ∧ v3 :=
(
(−1)i detV [i]

)4
i=1

, vj ∈ R4,

where V = (v1,v2,v3) ∈ R4×3 and V [i] ∈ R3×3 is a submatrix of V with i-th
row of the original matrix omitted.

Theorem 1. Suppose that r : [α, β] → R3 is a smooth parametric curve such that
r′, r′′ are linearly independent and the corresponding torsion τ doesn’t vanish on
the domain interval. Let P be the homogeneous curve representation and let L
be its dual form. Then, on [α, β],

L(ℓ) ·P (r) = 0, 0 ≤ ℓ+ r ≤ 2, L(r) ·P (3−r)+L(3−r) ·P (r) = 0, r = 0, 1, (5)

and
P ∼ L ∧L′ ∧L′′, L ∼ P ∧ P ′ ∧ P ′′. (6)

Also, any regular reparameterizationφ : [α, β] → [γ, δ] of one form reparametrises
the other one also,

P ◦ φ ∼ (L ◦ φ)∧(L ◦ φ)′∧(L ◦ φ)′′ , L ◦ φ ∼ (P ◦ φ)∧(P ◦ φ)′∧(P ◦ φ)′′ .
(7)

PROOF. The system (3) in the homogeneous form reads L(ℓ) ·P = 0, ℓ = 0, 1, 2.
If we differentiate these equations consecutively, we obtain

0 =
(
L(ℓ) · P (r)

)′
= L(ℓ) · P (r+1), ℓ = 0, . . . , 1− r; r = 0, 1,

0 =
(
L(ℓ) · P (2−ℓ)

)′
= L(ℓ+1) · P (2−ℓ) +L(ℓ) · P (3−ℓ), ℓ = 0, 1, 2,

what implies (5). By the assumption on the derivatives of r and τ vectors L,L′,
and L′′ span a three dimensional subspace of R4 for any t ∈ [α, β]. But P is by
(5) orthogonal to any of them, so it should be proportional to the wedge product
L ∧L′ ∧L′′. The first assertion in (6) is proved. The second one follows simi-
larly. To prove (7) observe (L ◦ φ) ∧ (L ◦ φ)′ ∧ (L ◦ φ)′′ = φ′3 (P ◦ φ) . �

The relations (6) emphasize the symmetry among the homogeneous form of a
curve and the dual one. The form L is dual to P , and vice versa. So dual to
dual of P or L should be equivalent to the original form. The following corollary
states this fact precisely.
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Corollary 2. Let Q1 := P , Q2 := L be the homogenuous and the dual represen-
tation of a smooth parametric curve r : [α, β] → R3 that satisfies the assumptions
of Theorem 1. Let i ∈ {1, 2} be fixed. If the representation Q3−i is determined by

Q3−i = Qi ∧Q′
i ∧Q′′

i , (8)

then
Q3−i ∧Q′

3−i ∧Q′′
3−i = det

(
Qi,Q

′
i,Q

′′
i ,Q

(3)
i

)2
Qi. (9)

PROOF. Since by Theorem 1, Qi ∼ Q3−i ∧Q′
3−i ∧Q′′

3−i, there exists a smooth
function ζ ̸= 0 such that ζQi = Q3−i ∧ Q′

3−i ∧ Q′′
3−i. If we apply the scalar

product ·Q(3)
3−i on both sides of the equation, we obtain, with the help of (5),

ζ =−
det
(
Q3−i,Q

′
3−i,Q

′′
3−i,Q

(3)
3−i

)
Q

(3)
i ·Q3−i

=
det
(
Q3−i,Q

′
3−i,Q

′′
3−i,Q

(3)
3−i

)
det
(
Qi,Q

′
i,Q

′′
i ,Q

(3)
i

) . (10)

The relations (5) give also(
Q3−i,Q

′
3−i,Q

′′
3−i,Q

(3)
3−i

)T (
Qi,Q

′
i,Q

′′
i ,Q

(3)
i

)

=


0 0 0 Q3−i ·Q

(3)
i

0 0 Q′
3−i ·Q′′

i Q′
3−i ·Q

(3)
i

0 −Q′
3−i ·Q′′

i Q′′
3−i ·Q′′

i Q′′
3−i ·Q

(3)
i

−Q3−i ·Q
(3)
i Q

(3)
3−i ·Q′

i Q
(3)
3−i ·Q′′

i Q
(3)
3−i ·Q

(3)
i

 .

From here and (5) we obtain

det
(
Q3−i,Q

′
3−i,Q

′′
3−i,Q

(3)
3−i

)
det
(
Qi,Q

′
i,Q

′′
i ,Q

(3)
i

)
=
(
Q3−i ·Q

(3)
i

)2 (
Q′

3−i ·Q′′
i

)2
= det

(
Qi,Q

′
i,Q

′′
i ,Q

(3)
i

)4
,

what together with (10) concludes the proof. �

Suppose now that the curve r that satisfies the assumptions of Theorem 1 is a
rational one,

r =
1

q
p =

1

q
(p1, p2, p3)

T ,
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The polynomials q, p1, p2, p3 are assumed to be relatively prime, and the degree
of the curve is the highest degree of the polynomials involved. Quite clearly,
the degree should be at least 3 since otherwise the torsion of r would vanish.
The homogeneous representation of a rational curve is naturally a polynomial
one, P = (q;p), and the degree of P equals to the degree of r. For the dual
representation we take (8) with i = 0, L = P ∧ P ′ ∧ P ′′, what by (9) implies

L ∧L′ ∧L′′ = det
(
P ,P ′,P ′′,P (3)

)2
P . (11)

If the components of L are not relatively prime, we may divide L by the greatest
common polynomial divisor to obtain relatively prime components. This simpli-
fies the polynomial dual representation as much as possible. Except for the cubic
case, the degrees of P and L will be different in general. The following definition
makes a distinction between the degree of the curve and the degree of its dual
form.

Definition 1. Rational curves with relatively prime polynomial dual form L of
degree m are called class m curves.

Let us reveal the relation between degrees of the curve representations. But first,
we need the following theorem.

Theorem 3. Let p : R → Rd be a polynomial vector field of the degree n, and let
0 ≤ r < d, r ≤ n. Any (r + 1)× (r + 1) minor of the matrix P =

(
p(j)
)r
j=0

is a
polynomial of the degree ≤ (r + 1)(n− r).

PROOF. Polynomial vector field can be expressed as p = A (ti)
n
i=0 where A ∈

Rd×(n+1) is a matrix of its coefficients. Then P = AM , where the matrix that
doesn’t depend on the polynomial field coefficients readsM =

(
(ti)(j)

)n;r
i=0;j=0

. So
it is enough to consider the minors of M only. For this purpose, let us introduce
polynomials

πj(t) :=
(n− r)!

(n− j)!

r−j−1∏
k=0

(n− j − k − t), j = 0, 1, . . . , r. (12)

Since the polynomial πj is of the degree r − j, it can be written in the Newton
form as

πj(t) =

r−j∑
k=0

[0, 1, . . . , k]πj

k−1∏
ℓ=0

(t− ℓ).
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With divided differences, involved in this polynomial representations, we build a
lower triangular matrix

C = (cij)
r,r
i=0,j=0 ∈ Rr+1,r+1, cij :=

{
ti−j [0, 1, . . . , i− j]πj, i ≥ j,

0, i < j.

Since detC =
∏r

j=0 cjj =
∏r

j=0 πj(0) = 1, the minors of M are equal to the
minors of the product MC = (m̃i,j)

n,r
i=0,j=0. Note that m̃ij = 0 for i < j, and

(i− j)!

i!
tj−im̃ij =

min{i,r}∑
k=j

(
(i− j)!

i!
tj−i

)(
i!

(i− k)!
ti−k

)(
tk−j[0, 1, . . . , k − j]πj

)
=

min{i,r}∑
k=j

(i− j)!

(i− k)!
[0, 1, . . . , k − j]πj = πj(i− j), i ≥ j.

From (12) it follows now that

m̃ij = 0, i = n− r + j + 1, n− r + j + 2, . . . , n, j = 0, 1, . . . , r − 1.

All the nonzero elements of M̃ are thus of the degree ≤ n− r and the conclusion
follows. �

Let n = degP , m = degL and L = P ∧ P ′ ∧ P ′′. Theorem 3, applied to
L shows that m ≤ 3(n − 2). Further, it reveals deg

(
det
(
P ,P ′,P ′′,P (3)

))
≤

4(n− 3), and if the equality is reached, then (11) implies m = 3(n− 2) since

3(m− 2) ≥ deg (L ∧L′ ∧L′′) = 2(4(n− 3)) + n = 3(3(n− 2)− 2).

Similarly, if m̃ = degL, and ñ = degP , P = L∧L′ ∧L′′ the bound reads ñ ≤
3(m̃ − 2) where the equality holds if deg

(
det
(
L,L′,L′′,L(3)

))
= 4(m̃ − 3).

This observation simply says that a switch from a known dual representation L
to a closed form representation P might significantly increase complexity of the
curve representation. If one is forced to start with the dual representation as it is
the case with PH curves, low class curves will be the first to consider. However,
point evaluation is a basic task one encounters, but it can be done efficiently from
the dual form too. The wedge product requires O (1) operations only, and the
values L(t), L′(t) and L′′(t) can be computed simultaneously. Let us demonstrate
this in the case the dual representation is expressed in the Bézier form.
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Suppose that L is a dual representation of the class m curve given in the
Bézier form L(t) =

∑m
i=0LiBm,i(t), where Bm,i(t) :=

(
m
i

)
ti(1 − t)m−i are the

Bernstein basis polynomials, and Li the corresponding control points of the dual
representation. The de Casteljau algorithm evaluates the dual form as

L0
i (t) := Li, i = 0, 1, . . . ,m,

(13)
Lr

i (t) = (1− t)Lr−1
i (t) + tLr−1

i+1 (t), i = 0, 1, . . . ,m− r, r = 1, 2, . . . ,m.

It seems that the last three columns r = m − 2,m − 1,m of the triangular array
(13) are needed to compute the required three values L(t), L′(t) and L′′(t). But
the following observation shortens the algorithm.

Theorem 4. Let L be the dual representation of a class m curve, and let P be
the homogeneous curve representation. Then

P (t) ∼ Lm−2
0 (t) ∧Lm−2

1 (t) ∧Lm−2
2 (t), (14)

with Lr
i (t) determined by the de Casteljau algorithm (13).

PROOF. Note that

L(t) = Lm
0 (t) = (1− t)2Lm−2

0 (t) + 2(1− t)tLm−2
1 (t) + t2Lm−2

2 (t),

L′(t) = m
(
Lm−1

1 (t)−Lm−1
0 (t)

)
= m

(
(t− 1)Lm−2

0 (t) + (1− 2t)Lm−2
1 (t) + tLm−2

2 (t)
)
,

L′′(t) = m(m− 1)
(
Lm−2

2 (t)− 2Lm−2
1 (t) +Lm−2

0 (t)
)
.

Since the wedge product is linear in all operands involved, we obtain from (6)

P (t) ∼ L(t) ∧L′(t) ∧L′′(t) = m2(m− 1)
(
Lm−2

0 (t) ∧Lm−2
1 (t) ∧Lm−2

2 (t)
)
.

�

The de Casteljau algorithm used on dual coordinates has a nice geometric inter-
pretation. Every coefficient in the array defines the plane in homogeneous co-
ordinates. Every linear interpolation (13) gives a new plane that passes through
the intersection line of two given planes. The last coefficient Lm

0 (t) defines the
osculating plane of the spatial curve at parameter t. Intersection of Lm−1

0 (t) and
Lm−1

1 (t) corresponds to the tangent line of the curve at parameter t. Finally, the in-
tersection of Lm−2

0 (t),Lm−2
1 (t) and Lm−2

2 (t) gives the homogeneous coordinates
(14) of the point on the curve.
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3. Rational PH curves in dual form

Let us turn our attention to rational PH curves. The PH conditions are satisfied
if one starts with a rational unit length tangent t = 1

ρ
h, where h is a polynomial

curve, and ρ = ∥h∥ is its polynomial norm. This gives the hodograph r′ = ψh,
where ψ is any rational function such that

r =

∫
r′ =

∫
ψh =:

1

q
p (15)

is a rational curve too. Based upon a homogeneous curve representation P =
(q;p) we compute the polynomial dual form L = (−f ;u) as

P ∧ P ′ ∧ P ′′ = P ∧ q
(
P

q

)′

∧ q
(
P

q

)′′

= q2ψ2P ∧ (0;h) ∧ (0;h′) ∼

∼ P ∧ (0;h) ∧ (0;h′) = L.

From (15) it follows that p = q
∫
ψh, and the wedge product evaluates compo-

nents of L to

f = q det

(∫
ψh,h,h′

)
, u = qh× h′. (16)

Quite clearly, choosing ψ in (15) as a polynomial is only one of the possible
choices which implies q = 1 and leads to polynomial PH curves. More generally,
the curve r is reproduced from its dual form (16) where polynomials f and q are
in a particular relation that involves also a rational function ψ. But, the possible
candidates for ψ are hard to be determined, especially if h depends on some un-
known coefficients. More or less, all reduces to a question, when the integral of
a rational is rational too. Thus we tear apart the relation between the polynomials
f and q, and we consider them as independent. To emphasize this, we rename q
to g. Of course, a curve obtained from such a dual form will still be a rational
PH curve, but its denominator would be equal to g only for particular pairs f and
g that would produce a common factor in the homogeneous curve representation
such as one determined in (11). Theorem 5 summarizes the discussion and reveals
the connection between a chosen dual form and the rational function ψ.

Theorem 5. Suppose that h : R → R3 is a polynomial curve such that h,h′,h′′

are linearly independent, and its norm ∥h∥ is polynomial too. Let v := h × h′,
and let f , g be relatively prime polynomials. The dual form

L = (−f ; g v) (17)
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determines a rational PH curve r with the denominator

g3 det(v,v′,v′′) = g3 det(h,h′,h′′)
2 (18)

and the hodograph r′ = ψh, where

ψ =

(
f

g

det (h,h′′,h′′′)

det (h,h′,h′′)
2 +

((
f

g

)′
1

det (h,h′,h′′)

)′)′

+
f

g

det (h′,h′′,h′′′)

det (h,h′,h′′)
2 .

(19)
Moreover, if g is constant and the polynomial f is chosen as

f = g det

(∫
ψh,h,h′

)
, (20)

for some arbitrary polynomial ψ, then the curve reduces to a polynomial one.

PROOF. The reduction of a rational PH curve to a polynomial one and formula
(20) follow from the previous discussion. Using a cross product identity

(a×b)×(a×c) = det(a, b, c)a, a, b, c ∈ R3,

one obtains
v×v′ = (h×h′)×(h×h′′) = det(h,h′,h′′)h. (21)

Furthermore,

det(v,v′,v′′) = (v×v′) · (h′×h′′ + h×h′′′) = det(h,h′,h′′)
2 (22)

and
det
(
gv, (gv)′ , (gv)′′

)
= g3 det(v,v′,v′′) = g3 det(h,h′,h′′)

2
,

which confirms (18). In order to prove the hodograph assertion and (19), let L
be the curve dual form (17), and let L̃ := 1

g
L =

(
−f

g
;h× h′

)
. Then equivalent

homogeneous representations of the rational curve r are derived as

L∧L′ ∧L′′ ∼ L̃∧ L̃
′
∧ L̃

′′
=: R =: (R0, R1, R2, R3)

T ∼ 1

R0

R =: R̃ = (1; r) ,

and the derivative R̃
′
reads

R̃
′
= (0; r′) =

1

R0

R′ − R′
0

R2
0

R = L̃ ∧ L̃
′
∧
(

1

R0

L̃
′′
)′
,
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where R0 = det(h,h′,h′′)
2 by (22). Further, we observe from (5)

R̃
′
·L = 0 = r′ · (h× h′) , R̃

′
·L′ = 0 = r′ · (h× h′)

′
= r′ · (h× h′′) .

This shows that r′ is orthogonal to v and v′. By (21) we conclude that r′ = ψh
for some function ψ. Applying a linear functional det(·,h′,h′′) on both sides of
this equation gives

ψ =
det(r′,h′,h′′)

det(h,h′,h′′)
.

The proof of (19) is completed by a straightforward evaluation of the determinant

(h′ × h′′) · r′ = (0;h′ × h′′) · R̃
′
= (0;h′ × h′′) ·

(
L̃ ∧ L̃

′
∧
(

1

R0

L̃
′′
)′)

.

�

There are two equivalent common ways to obtain a rational unit vector field. The
first one is to use the stereographic projection, which defines a bi-rational corre-
spondence between points in the plane and points on the unit sphere in R3 (see
[8]). The other approach which will be used in this paper is based upon quaternion
polynomials.

Space of quaternions H is a 4–dimensional vector space with a standard basis
{1, i, j,k}. Quaternions can be written as A = (a,a) where the first component
is called a scalar part, and the remaining three components form a vector part of
the quaternion. A quaternion with a zero scalar part is called a pure quaternion,
and such quaternions are identified with vectors in R3, i.e., A ≡ a for A = (0,a).

To construct a rational unit vector field of tangents we start by a quaternion
polynomial A ∈ H[t], which components are relatively prime. With quaternion
polynomial A we associate the orthonormal Euler-Rodrigues frame (ei)

3
i=1, de-

fined by

e1 :=
1

∥A∥2
A iA*, e2 :=

1

∥A∥2
A jA*, e3 :=

1

∥A∥2
AkA*, (23)

where A* = (a,−a) denotes the conjugate of A, and ∥A∥ =
√
AA* the norm. A

vector field ω that satisfies e′
i = ω × ei determines the rotation axis of the frame.

If we express it in the E-R frame moving coordinate system, ω = ω1e1 + ω2e2 +
ω3e3, the relation ej · e′

i = ej · (ω × ei) = det (ej,ω, ei) gives the coefficients

ω1 = e3 ·e′
2 = −e2 ·e′

3, ω2 = e1 ·e′
3 = −e3 ·e′

1, ω3 = e2 ·e′
1 = −e1 ·e′

2, (24)
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and the frame speed (e′
i)
3
i=1 follows from

e′
1 = ω3e2 − ω2e3, e′

2 = −ω3e1 + ω1e3, e′
3 = ω2e1 − ω1e2. (25)

The polynomial elements needed in Theorem 5 are introduced by

ρ := ∥A∥2 , hi := ρ ei, i = 1, 2, 3, h := h1. (26)

Since the components of A are relatively prime, one has ρ > 0 ([2], p. 483).
Moreover, the vector field v = h× h′ of Theorem 5 can be expressed as

v = ν2h2 + ν3h3, ν := (νi)
3
i=1 := ρ (ωi)

3
i=1 , (27)

where νi is the numerator of ωi. Given f in g, the procedure outlined generates
the corresponding dual form L = (−f ; gv) from A by (23), (24), (26), and (27)
completely.

As an example, let us apply Theorem 5 to a curve generated by the quadratic
quaternion polynomial

A(t) =
(
1, (0, 0, 0)T

)
+
(
0, (1, 0, 1)T

)
t+
(
0, (1,−1, 1)T

)
t2.

The components of A are 1, t(t + 1),−t2, t(t + 1), thus relatively prime. One
obtains

h =

 1− t4

2(1− t2)t(t+ 1)

2
(
t2 + (t2 + t)

2
)
 , v =

 4t2 (t4 + 6t3 + 7t2 + 4t+ 2)
−4t (t5 + 2t4 + 2t2 + 3t+ 2)

2(t+ 1)2 (−t4 + 4(t− 1)t2 + 1)

 .

The dual form (17) is of the degree 6 provided g is constant and deg (f) ≤ 6. The
choice g(t) = 1 and f(t) = 1 + t3 − t6 determines a class 6 rational PH curve r
of the degree 12 with a hodograph r′ = ψh where

ψ(t) =
3

8 (2t6 + 3t5 − 12t3 − 9t2 − 3t− 1)3
(
22t12 + 42t11 + 6t10 + 559t9

+1152t8 + 1035t7 + 423t6 + 81t5 + 189t4 + 547t3 + 363t2 + 96t+ 5
)
.

Singular points of r are determined by ψ only. The derivative r′ vanishes at
zeroes of ψ: t = −3.13475, t = −0.0676759, t = ±∞, and it is unbounded at
t = −0.59708, t = 1.70123.

13



4. Low class rational PH curves

The degree of a dual PH curve form (17) depends on degrees of A, f and g.
The degree of quaternion polynomial affects it most. Namely, if the degree of A
is equal to k, it is easy to verify that

deg (νi) ≤ 2k − 2, deg (hi) ≤ 2k, i = 1, 2, 3. (28)

Theorem 3 implies then deg (v) ≤ 4k − 2. If the components of v are relatively
prime and the equality holds, the class m equals to

m = max {4k − 2 + deg (g) , deg (f)} .

So a quest for low class rational PH curves must start with k = 1, and g of a low
degree. Further, a quadratic A yields curves of the class ≥ 6, and cubic one results
in the class ≥ 10 provided the components of v are relatively prime. But if they
are not, the class could be quite clearly reduced by a proper choice of f . Suppose
that

v = ϑvR = ϑ (vR,1, vR,2, vR,3)
T

for some nonconstant polynomial ϑ. Then for any f which is divisible by ϑ a class
m reduces by deg (ϑ). Relations between quaternion polynomial A coefficients
that give rise to a common polynomial factor ϑ in v are rather complicated. The
next lemma reveals some necessary ones. The notation p

∣∣q will be used to denote
that a polynomial p divides a polynomial q.

Lemma 1. Suppose that v = ϑvR. Then ϑ must satisfy

ϑ
∣∣ (ν2 ρ2) , ϑ

∣∣ (ν3 ρ2) . (29)

Moreover,
ϑ2
∣∣λ, (30)

where
λ := det(h,h′,h′′) = ν1

(
ν22 + ν23

)
+ ρ (ν2ν

′
3 − ν3ν

′
2) . (31)

PROOF. Since hi · hj = δi,jρ
2, the assertion (29) follows from (27). The expan-

sion (31) is computed from (24), (25),(26), and (27). From (21) we obtain

v×v′ = ϑ2vR×v′
R = λh.

14



The condition (30) clearly holds if the components of h are relatively prime. To
prove that it always holds we need to examine the case when h = ϑhhR, where ϑh

denotes the greatest common factor. In this case λ = ϑ3
h det(hR,h

′
R,h

′′
R). This

shows that any function that divides ϑh divides also λ which implies the assertion
and completes the proof. �

The next lemma shows that a multiplication of A by a constant quaternion does
not change the class of the corresponding curve or the degree of a common factor
in v. It induces a rotation and the scaling of the original curve only.

Lemma 2. Suppose that Q =
(
q0, (q1, q2, q3)

T
)
∈ H, ∥Q∥ > 0, A ∈ H[t], and

polynomials f , g are prescribed. Let dual forms L = (−f ; gv), LQ = (−f ; gvQ)
be generated by the quaternion polynomials A and AQ := QA respectively and
let r and rQ be the corresponding rational curves. Then

vQ = ∥Q∥4 R(Q)v, rQ =
1

∥Q∥4
R(Q)r,

where

R(Q) :=
1

∥Q∥2

q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23


is the rotation matrix that corresponds to the quaternion Q.

PROOF. For any vector s ∈ R3 a quaternion product Q(0, s)Q* gives a pure
quaternion which is equivalent to a multiplication of s by a rotation matrix (see
e.g. [9, Chapter 29]), i.e.,

Q(0, s)Q* ≡ ∥Q∥2R(Q)s.

Therefore,

hQ := AQiA*
Q = ∥Q∥2R(Q)AiA* = ∥Q∥2R(Q)h

and

vQ = hQ × h′
Q = ∥Q∥4 (R(Q)h)× (R(Q)h′) = ∥Q∥4R(Q)v.

To prove the second assertion note that

(Ms1) ∧ (Ms2) ∧ (Ms3) = detM
(
M−T (s1 ∧ s2 ∧ s3)

)
15



for any nonsingular matrix M ∈ R4×4 and any si ∈ R4, i = 1, 2, 3. If we choose

M as M =

(
1 0T

0 ∥Q∥4 R(Q)

)
, then LQ = ML and PQ = detM

(
M−TP

)
.

Using (4) and M−T =

(
1 0T

0 1
∥Q∥4R(Q)

)
concludes the proof. �

Lemma 2 simplifies the rational PH curve generation. Without loss of generality,
we may write the quaternion polynomial A ∈ H[t] involved in (23) as a prod-
uct QA where the leading quaternion coefficient of A equals 1 =

(
1, (0, 0, 0)T

)
.

The quaternion Q represents the final curve rotation, but it adds only two free
parameters to its representation. Quite clearly, since the E-R frame (23) is ho-
mogeneous, we can assume ∥Q∥ = 1. The rotation around e1, implied by a
quaternion U =

(
cosφ, (sinφ, 0, 0)T

)
, pins Q down to two degrees of freedom.

So it is enough to investigate dual forms L = (−f ; gRv), where v is generated
by the quaternion polynomial with the leading coefficient equal to 1. For the final
rotation R one may choose any rotation in R3 depending on two free parameters
such as

R = R (θ, ϱ) =

 cos θ cos ϱ cos ϱ sin θ sin ϱ
− sin θ cos θ 0

− cos θ sin ϱ − sin θ sin ϱ cos ϱ

 .

Since a rotation doesn’t influence the basic curve generation, we shall stick to the
case R = I from now on only.

5. Rational PH curves generated by linear quaternion polynomials

Let us examine rational PH curves generated by a linear quaternion polyno-
mial

A(t) = A0 +A1t, Ai :=
(
a0,i, (a1,i, a2,i, a3,i)

T
)
, (32)

with A1 = 1. The functions and the fields needed are generated by (23), (24),
(26), and (27). From (28) we observe

deg (νi) = 0, deg (hi) ≤ 2, i = 1, 2, 3,

and thus (27) implies that the vector field v is of degree ≤ 2. Further, from
(31) we compute λ = −8a1,0

(
a22,0 + a23,0

)
, and the curve generated is well de-

fined provided a1,0, a2,0, a3,0 ̸= 0. The dual form L = (−f ; gv) is of the degree

16



max {2 + deg (g) , deg (f)} and the class 3 curve r is obtained by the choice

f(t) = f0 + f1t+ f2t
2 + f3t

3, g(t) = g0 + g1t, g ̸≡ 0.

Let us reparameterize an equivalent dual form L̃ := 1
g3
L =

(
− f

g3
; 1
g2
v
)

by

t = φ(τ) :=
g1 + g0τ

g0 − g1τ
. (33)

From
ti

g(t)k
=

φ(τ)i

g(φ(τ))k
=

1

(g20 + g21)
k
(g0τ + g1)

i (g0 − g1τ)
k−i , 0 ≤ i ≤ k, k = 2, 3,

we observe that the polynomial f
g3

◦ φ and the polynomial field 1
g2
v ◦ φ are of

the degree ≤ 3 and ≤ 2 respectively. But then, by (7), (18), and Theorem 3, the
reparameterized cubic curve r ◦ φ is a polynomial one. This proves the following
observation.

Theorem 6. Suppose that v is generated by a linear quaternion (32), with A1 = 1,
and a1,0, a2,0, a3,0 ̸= 0. Suppose that f is a cubic polynomial, and g is a linear
one. Then a rational curve obtained from a dual representation L = (−f ; gv) is
a reparameterized polynomial cubic PH curve.

6. Rational PH curves generated by quadratic quaternion polynomials

The previous section showed that we must start with at least a quadratic quater-
nion polynomial

A(t) = A0 +A1t+A2t
2, Ai =

(
a0,i, (a1,i, a2,i, a3,i)

T
)
, i = 0, 1, 2, (34)

to obtain a rational PH curve that can not be reparameterized to a polynomial one
in the case deg (g) ≤ 1. Without loos of generality we simplify (34) by A2 = 1.
Again, the functions and the fields needed are generated by (23), (24), (26), and
(27). Also, (28) gives deg (νi) ≤ 2, deg (hi) ≤ 4, i = 1, 2, 3. It is straightforward
to obtain

ν = −2

a1,1t2 + 2a1,0t+ a0,1a1,0 − a0,0a1,1 − a2,1a3,0 + a2,0a3,1
a2,1t

2 + 2a2,0t+ a0,1a2,0 − a0,0a2,1 + a1,1a3,0 − a1,0a3,1
a3,1t

2 + 2a3,0t− a1,1a2,0 + a1,0a2,1 + a0,1a3,0 − a0,0a3,1

 , (35)

ρ = t4 + 2a0,1t
3 +

(
3∑

i=0

a2i,1 + 2a0,0

)
t2 + 2

(
3∑

i=0

ai,0ai,1

)
t+

3∑
i=0

a2i,0,

λ = −8
(
a2,1a3,0 − a2,0a3,1 + a1,1

(
a22,1 + a23,1

))
t6 + . . . ,
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and the key vector field

v =

−4
(
a2,1a3,0 − a2,0a3,1 + a1,1

(
a22,1 + a23,1

))
t4 + . . .

−2a2,1t
6 − 4 (a2,0 + a0,1a2,1 − a1,1a3,1) t

5 + . . .
−2a3,1t

6 − 4 (a3,0 + a1,1a2,1 + a0,1a3,1) t
5 + . . .

 , (36)

which is of the degree 6 provided a22,1 + a23,1 > 0. We assume g = 1 and
deg (f) ≤ deg (v) to decrease the class of the curve too. The class 6 curves
are right at hand. Their standard rational form r will be by Theorem 3 of the de-
gree 12 in general. But to obtain lower class curves some further relations between
quaternion parameters have to be imposed. There are two ways to decrease the
curve class: one could simply annihilate the leading coefficients of v or one may
determine conditions that imply polynomial factorization v = ϑvR. In the latter
case, we write f as ϑf to make it divisible by ϑ too, and we obtain the reduced
dual form L = (−f ;vR). From (36) we observe that additional assumptions on
the quaternion coefficients

a2,1 = a3,1 = 0 (37)

generate class 5 curves with the standard rational form of the degree 9, with v
from (36) reduced to

v =

−4
(
a22,0 + a23,0

)
(a1,1t

2 + 2a1,0t+ a0,1a1,0 − a0,0a1,1)
−4a2,0t

5 + (6a1,1a3,0 − 10a0,1a2,0) t
4 + . . .

−4a3,0t
5 − 2 (3a1,1a2,0 + 5a0,1a3,0) t

4 + . . .

 , (38)

and further

ν = −2

a1,1t2 + 2a1,0t+ a0,1a1,0 − a0,0a1,1
2a2,0t+ a0,1a2,0 + a1,1a3,0
2a3,0t− a1,1a2,0 + a0,1a3,0

 , (39)

λ = −
(
a22,0 + a23,0

) (
24a1,1t

4 + 16 (4a1,0 + a0,1a1,1) t
3 + . . .

)
.

Note that the degree of the denominator will only be equal to 2 deg (λ) = 2∗4 = 8

in general. As an example, take A =
(
t2 − t, (−t,−2, 2)T

)
, and f = t3. Then

we obtain

h =

(t− 2) (t3 + 2t+ 4)
4t2

4(t− 2)t

 , v =

 32t2

8(t− 2)2 (t3 − 2)
−8t (t4 − t3 + 8)

 , L =
(
−t3;v

)
,

(40)
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and the homogeneous curve form equals

P =


−4096 (−3t4 + 2t3 + 8)

2

−128t (3t8 − 6t6 + 2t5 − 48t4 + 48t3 − 16t2 + 192)
512t3 (3t4 − t3 + 8)

512t2 (3t5 − 4t4 + 8t− 24)

 .

The hodograph r′ = ψ h follows from (40) and

ψ =
3 ((3t5 + 96t− 32) t3 + 64)

32 (t3(3t− 2)− 8)3
.

The second approach seems to lead to a different type of the class 5 curves, but
they only differ in the parameterization. Suppose that ϑ := ϑ(t) := θ0+ θ1t, θ1 ̸=
0, divides the field v, v = ϑvR. The denominator of the curve obtained from
L = (−f ;vR) equals

det(vR,v
′
R,v

′′
R) =

λ2

ϑ3
=

(
λ

ϑ2

)2

ϑ, (41)

but the last term is by (30) the product of polynomials. So the curve has a singular
point at the parameter value t = − θ0

θ1
. However, the reparameterization (33) with

gi → θi, i = 0, 1, maps this singular point to infinity, and the reparameterized
dual form

(θ0 − θ1τ)
9L (−f ◦ φ;vR ◦ φ)

is of the same type as the one obtained by assuming (37).
If we carry on the degree reduction of v from (37) further, we don’t ob-

tain class 4 curves. Indeed, the reduction of (38) to the degree ≤ 4 implies
a2,0 = a3,0 = 0, but then the curve generated is not defined since the corre-
sponding λ equals 0. This leaves two ways to obtain the class 4 curves. The first
one is to determine conditions such that v in (38) would admit a common linear
factor ϑ. But then, as in (41), the corresponding curve would inevitably have a
singular point at some finite parameter value, and the other one at infinity. The
second way is to determine a quadratic divisor ϑ of the field (36) where we assume
a2,1, a3,1 ̸= 0. Since ρ = ∥A∥2 = ∥h∥ and a common factor of h cannot have real
roots provided A has relatively prime components, it is clear that any polynomial
that divides ρ can only be factorized to irreducible quadratic factors over the real
field R. But then by (29) the polynomial ϑ must divide either ν2 and ν3, or ρ.
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The second possibility is rather complex, and we consider the first one only. Note
(35). Since ϑ, ν2 and ν3 are all quadratic, ϑ

∣∣ν2 and ϑ
∣∣ν3 imply

ν2
a2,1

=
ν3
a3,1

=⇒ a1,0 =
a1,1a3,0
a3,1

, a2,0 =
a2,1a3,0
a3,1

.

This gives the coefficient relations of the quadratic quaternion polynomial (34)
that generates the class 4 curves as

A0 =

(
a0,0,

(
a1,1a3,0
a3,1

,
a2,1a3,0
a3,1

, a3,0

)T
)
.

It is easy to verify that this relation is equivalent to A0,A1, and A2 = 1 being
linearly independent. As an example, f = t3 and the quaternion polynomial
A =

(
t2 + 2t+ 2, (−2t− 2,−2t− 2, 2t+ 2)T

)
generates the curve determined

by either one of the forms

L =


−t3

−32(t+ 1)2

−2t4

2(t+ 2)4

 , P =


2048t3(t+ 2)3

192t4(t+ 2)2

128t2(t+ 2)2 (t2 + 2t− 6)
128t4 (t2 + 6t+ 6)

 .

The class 3 PH curves seems to be the most promising in practical applica-
tions. As with the class 5 we send with (37) one singular point to infinity, and
only a quadratic reduction factor ϑ has to be decided upon. But from (38) and
(39) we observe that ϑ should be proportional to ν1, so we choose

ϑ = − 1

2a1,1
ν1 = t2 + 2

a1,0
a1,1

t+
a0,1a1,0 − a0,0a1,1

a1,1
.

By (29), it is necessary that ϑ divides ρ. The remainder that should vanish is a
linear polynomial

1

a31,1

(
a21,0 − a0,1a1,1a1,0 + a0,0a

2
1,1

) (
4 (a0,1a1,1 − 2a1,0) t

+
(
a20,1 + 4a0,0

)
a1,1 − 4a0,1a1,0 + a31,1

)
+ a22,0 + a23,0.

The term a21,0−a0,1a1,1a1,0+a0,0a21,1 must not vanish since obviously a22,0+a
2
3,0 >

0. This implies a0,1a1,1 − 2a1,0 = 0, and we obtain equations

a22,0 + a23,0 +
1

4

(
a20,1 − 4a0,0

) (
a20,1 − a21,1 − 4a0,0

)
= 0, a0,1a1,1 − 2a1,0 = 0,
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simplified to

a0,1 =
2a1,0
a1,1

, a0,0 =
a21,0
a21,1

−
a21,1
8

± 1

8

√
a41,1 − 16

(
a22,0 + a23,0

)
.

If these equations are satisfied, ϑ divides not only ρ, but v too. Namely, it is
straightforward to evaluate vR = 1

ϑ
v, and to prove the following conclusion.

Theorem 7. Suppose that coefficients of the quadratic quaternion are given as

A0 =
(
a0,0, (a1,0, a2,0, a3,0)

T
)
, A1 =

(
2
a1,0
a1,1

, (a1,1, 0, 0)
T

)
, A2 = 1,

where a41,1 ≥ 16
(
a22,0 + a23,0

)
> 0 and

a0,0 =
a21,0
a21,1

−
a21,1
8

± 1

8

√
a41,1 − 16

(
a22,0 + a23,0

)
.

If f is a polynomial of the degree ≤ 3, then the dual form L = (−f ;vR), with
vR = (vR,1, vR,2, vR,3)

T , and

vR,1 = −4a1,1
(
a22,0 + a23,0

)
,

vR,2 =
2

a31,1

(
−2a2,0a

3
1,1t

3 +
(
3a41,1a3,0 − 6a1,0a

2
1,1a2,0

)
t2 + 6a31,1 (a1,0a3,0 − a0,0a2,0) t

+
(
a41,1 + 5a0,0a

2
1,1 − 2a21,0

)
a3,0a

2
1,1 + 2a1,0

(
2a21,0 − 3a0,0a

2
1,1

)
a2,0
)
,

vR,3 = − 2

a31,1

(
2a3,0a

3
1,1t

3 +
(
3a2,0a

4
1,1 + 6a1,0a3,0a

2
1,1

)
t2 + 6a31,1 (a1,0a2,0 + a0,0a3,0) t

+
(
a41,1 + 5a0,0a

2
1,1 − 2a21,0

)
a2,0a

2
1,1 + 2a1,0

(
3a0,0a

2
1,1 − 2a21,0

)
a3,0
)
,

determines the rational cubic PH curve with the denominator

576a21,1
(
a22,0 + a23,0

)2
ϑ = 576

(
a22,0 + a23,0

)
2
(
a21,1t

2 + 2a1,1a1,0t+ 2a21,0 − a0,0a
2
1,1

)
.

Let us now determine the homogeneous point representation P = (P0, P1, P2, P3)
T

for the curve, given by Theorem 7. If we extract the common factor

36
(
a22,0 + a23,0

)
a31,1

,
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we obtain the simplified homogeneous coordinates

P0 = −16a31,1
(
a22,0 + a23,0

) (
t2a21,1 + 2ta1,1a1,0 + 2a21,0 − a0,0a

2
1,1

)
,

P1 =
((
8a21,0a

2
1,1 − 4a0,0a

4
1,1

)
t2 + 4a1,0a

3
1,1

(
a21,1 + 2a0,0

)
t

−4a41,0 +
(
5a41,1 + 8a0,0a

2
1,1

)
a21,0 − a41,1

(
a0,0a

2
1,1 + 5

(
a22,0 + a23,0

)))
t,

P2 = 4a31,1
((
a2,0a

2
1,1 + 2a1,0a3,0

)
t+ 2a1,1 (a1,0a2,0 + a0,0a3,0)

)
t,

P3 = 4a31,1
((
a3,0a

2
1,1 − 2a1,0a2,0

)
t+ 2a1,1 (a1,0a3,0 − a0,0a2,0)

)
t.

As an example,

f = t3, a1,0 = 0, a1,1 = 3, a2,0 = 2, a3,0 = 1, a0,0 = −5

4
,−1, (42)

generates curves

− 1

240 (4t2 + 5)

(
5t
(
4t2 − 11

)
, 8t(12t− 5), 16t(3t+ 5)

)T
,

and
− 1

60 (t2 + 1)

(
t
(
t2 − 4

)
, 2t(3t− 1), t(3t+ 4)

)T
.
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Figure 1: Spatial rational cubic PH curve pair, generated by parameters (42).
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7. Conclusion and future work

Recently, the Pythagorean-hodograph property has been extended from planar
rational curves to spatial ones ([8]). In this paper, we carry the approach a step
further, but based upon the dual curve representation mainly.

There are many questions left concerning spatial rational PH curves. Of course,
one has to state and analyse interpolation schemes suited for this purpose. Anal-
ysis of singular points and potential alternative ways how to present rational PH
curves might also be two interesting issues. But perhaps the most valuable would
be the answer to the question, where and when rational PH curves do better than
their polynomial counterpart.
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