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Abstract

The paper presents a construction of a rigid body motion with point trajectories
being rational spline curves of degree eight joining together with G3 smoothness.
The motion is determined through interpolation of positions and derivative data
up to order three in the geometric sense. Nonlinearity in the spherical part of con-
struction results in a single univariate quartic equation which yields solutions in
a closed form. Sufficient conditions on the regions for the curvature data are de-
rived, implying the existence of a real admissible solution. The algorithm how to
choose appropriate data is proposed too. The theoretical results are substantiated
with numerical examples.

Keywords: motion design, geometric interpolation, rational spline motion,
geometric continuity

1. Introduction

Rational spline motions are motions of a rigid body where each point of a body
travels along a trajectory which is a rational spline curve. Construction of such
motions, that match a given sequence of positions, i.e., points and orientations of
a moving object is needed to manipulate objects in Computer Graphics, for path
planning in Robotics, etc.

The construction of a rigid body motion is usually divided into two parts, a ro-
tational (spherical) part and a translational part of the motion. Many interpolation
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approaches from curve design can directly be generalized to the motion design.
However the standard algorithms have a drawback since they imply rational mo-
tions of a relatively high degree (see [2], [3], [4], [5]), which is a consequence of
high degree of a rotational part of the motion. One of the possible remedies to
get motions of a lower degree is to use geometric interpolation techniques instead
(see [6], [7], [8], [9], [10], [11]). The first steps in this direction were proposed in
[12] and [13]. Geometric interpolation by parabolic splines was used to construct
G1 quartic rational spline motions. Later the generalization of this approach to
cubic interpolation, which leads to G2 rational spline motions of degree six, was
considered in [14]. Other geometrically continuous motions of degree six can be
found in [15] and [16]. The difficulty when using geometric interpolation meth-
ods is that nonlinear equations are involved and the existence and uniqueness of
an interpolant are not assured for all given data.

In practical applications G3 constructions are sometimes preferable (see e.g.,
[1]). Namely, such motions imply that also torsion of each trajectory is contin-
uous. Furthermore, if some general motion is approximated with the interpola-
tory G3 rational spline motion then the order of approximation is expected to be
eight while for the G2 case it is only six. In the present paper a construction of
a G3 continuous Hermite rational spline motion of degree eight, which on every
segment interpolates two positions and three derivative data at each position, is
considered. As expected, since geometric interpolation is involved, the explicit
conditions stated only on given data configurations which would assure an G3

interpolant to exist are nontrivial to be found. Instead, some solvability condi-
tions on the second order curvature quaternions are derived, which show that if
only positions, velocity quaternions and the first order curvature quaternions for
the spline motion construction are given, then with some possible slight modifi-
cations of the first order curvature quaternions we can always choose such second
order curvature quaternions that the admissible G3 spline interpolant exists.

The remaining of the paper is organized as follows. In the next section the
main properties of rational motions are presented. In Section 3 equations for the
G3 interpolatory spline motion are derived. The starting 32 nonlinear equations
that determine a spherical part of the motion reduce to a fourth order polynomial
equation in one variable. This enables us to express admissible solutions of the
interpolation problem explicitly. Next section considers conditions on the second
order curvature data, which assure the existence of an admissible solution. The
paper is concluded with some numerical examples.
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2. Preliminaries

A motion of a rigid body can be determined by a trajectory c = (c1, c2, c3)
>

of the origin of the moving system that describes a translational part of the motion
and by a 3 × 3 matrix R = R(t) needed for a spherical (rotational) part of the
motion. A trajectory of an arbitrary point p̂ of a rigid body is given as

(p̂, t) 7→ p(t) = c(t) +R(t) p̂.

The motion is called rational (spline) motion, if the elements of the vector c and
the matrixR are rational (spline) functions. The degree of the motion is the max-
imal degree of the functions involved.

We will use the space of quaternions to present rotation matrices. The space of
quaternions H is a 4–dimensional vector space with the standard basis {1, i, j,k},

1 = (1, 0, 0, 0), i = (0, 1, 0, 0), j = (0, 0, 1, 0), k = (0, 0, 0, 1).

Quaternions can be written as A = (a,a), where the first component is called
scalar part, and the remaining three components form the vector part of the quater-
nion, i.e., scal (A) = a, vec (A) = a. Quaternion sum and product are defined
as

A+B = (a+ b,a+ b), AB = (ab− a · b, ab+ ba+ a× b),

where B := (b, b), and ×, · denote the standard vector and scalar products in R3.
Equipped with these two operations H becomes an algebra. By using quaternions
Q = (q0, q1, q2, q3) ∈ H and the kinematical mapping χ : H \ {0} → SO3,

Q = (qi)
3
i=0 7→ χ(Q) :=

1

q20 + q21 + q22 + q23
,

q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

 ,

every rotationR can be represented as χ(Q) for some quaternion Q. Note that

χ(λQ) = χ(Q), λ ∈ R \ {0}.

The kinematical mapping defines a bijective correspondence between the set of
three dimensional rotations and the unit quaternion sphere S3 ⊂ R4 with identified
antipodal points (see [17]). More generally, applying mapping χ to a polynomial
(spline) curve of degree n gives a spherical rational (spline) motion of degree 2n.
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Since the construction of the translational part c = (ci)
3
i=1 of the motion

should not increase a degree of the motion, the functions ci should be chosen
as

ci =
wi
r
, r =

3∑
j=0

q2j , i = 1, 2, 3,

where w := (wi)
3
i=1 is a polynomial (spline) curve of degree ≤ 2n.

Let us now shortly recall geometric continuity conditions for motions, defined
in [14]. Suppose that two trajectories of an arbitrary point p̂,

p(t) = c(t) +R(t) p̂, t ∈ [t0, t1],

p̃(s) = c̃(s) + R̃(s) p̂, s ∈ [s0, s1],

are given and let quaternion curves q, q̃ represent the rotations R, R̃. The tra-
jectories join with geometric continuity of order k (or shortly with Gk continu-
ity) at a common point p(τ) = p̃(σ) iff there exists a regular reparameterization
ϕ : [t0, t1]→ [s0, s1], such that ϕ′ > 0, ϕ(τ) = σ and

djp(t)

dtj
∣∣
t=τ

=
dj (p̃ ◦ ϕ) (t)

dtj
∣∣
t=τ
, j = 0, 1, . . . , k,

or equivalently

djc(t)

dtj
∣∣
t=τ

=
dj (c̃ ◦ ϕ) (t)

dtj
∣∣
t=τ
,

djR(t)
dtj

∣∣
t=τ

=
dj
(
R̃ ◦ ϕ

)
(t)

dtj
∣∣
t=τ
. (1)

The Gk continuity conditions (1) for a spherical part are equivalent to

djq(t)

dtj
∣∣
t=τ

=
dj

dtj
(λ(t)q̃(ϕ(t)))

∣∣
t=τ
, j = 0, 1, . . . , k, (2)

where λ : [t0, t1] → R is a zero free scalar function, arising from the equivalence
relation in the 3-dimensional projective space. More details are given in [14].

3. G3 interpolatory spline motion

In this section the interpolation problem that results in a construction of a G3

continuous rational spline motion of degree eight is presented. Let a sequence
of (N + 1) rigid body positions Posi = [Ci,Ri], i = 0, 1, . . . , N , composed of
a center position Ci and a rotation matrix Ri, such that Ri 6= Ri+1, be given.
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With every rotation matrix Ri we associate a unit quaternion Qi in such a way
that the standard scalar product 〈Qi−1,Qi〉 of vectors Qi−1,Qi ∈ R4 is nonneg-
ative for i = 1, 2, . . . , N . Additionaly, every position is equipped with deriva-
tive information. More precisely, for a rotational part of the motion sets of Eu-

ler velocity quaternions (U i)
N
i=0 and curvature quaternions

(
U

[2]
i

)N
i=0

,
(
U

[3]
i

)N
i=0

are given. Similarly, we assume that positions of a center are equipped with

sets (f i)
N
i=0,

(
f

[2]
i

)N
i=0

,
(
f

[3]
i

)N
i=0

of tangent and curvature vectors, prescribed
by a user. The task is to construct a spline motion with equidistant breakpoints
0, 1, . . . , N , described by a quaternion spline curve q : [0, N ] → H and by a tra-
jectory c : [0, N ] → R3 in such a way that the given data are interpolated in a
geometric sense and that the resulting motion is G3 continuous.

Every segment of the spline can be expressed by rational motions, parameter-
ized on the interval [0, 1], as

q(u) = q` (u− `+ 1) ,

c(u) = c` (u− `+ 1) ,
u ∈ [`− 1, `] , ` = 1, 2, . . . , N,

where q` are determined by interpolation conditions derived from (2) (see also
[14]),

q`(j) =λ
`
j,0Q`−1+j,

q′`(j) =λ
`
j,1Q`−1+j + λ`j,0ϕ

`
j,1U `−1+j,

q′′` (j) =λ
`
j,2Q`−1+j +

(
2λ`j,1ϕ

`
j,1 + λ`j,0ϕ

`
j,2

)
U `−1+j + λ`j,0

(
ϕ`j,1
)2

U
[2]
`−1+j,

q′′′` (j) =λ
`
j,3Q`−1+j +

(
3λ`j,2ϕ

`
j,1 + 3λ`j,1ϕ

`
j,2 + λ`j,0ϕ

`
j,3

)
U `−1+j+

3
(
λ`j,1

(
ϕ`j,1
)2

+ λ`j,0ϕ
`
j,1ϕ

`
j,2

)
U

[2]
`−1+j + λ`j,0

(
ϕ`j,1
)3

U
[3]
`−1+j, j = 0, 1,

(3)

and the center trajectory is of the form c` =
w`

r`
with r` = ‖q`‖2, where w` must

by (1) satisfy

w`(j) =r`(j)C`−1+j,

w′`(j) =r
′
`(j)C`−1+j + r`(j)ϕ

`
j,1f `−1+j,

w′′` (j) =r
′′
` (j)C`−1+j +

(
2r′`(j)ϕ

`
j,1 + r`(j)ϕ

`
j,2

)
f `−1+j + r`(j)

(
ϕ`j,1
)2

f
[2]
`−1+j,

w′′′` (j) =r
′′′
` (j)C`−1+j +

(
3r′′` (j)ϕ

`
j,1 + 3r′`(j)ϕ

`
j,2 + r`(j)ϕ

`
j,3

)
f `−1+j+

3
(
r′`(j)

(
ϕ`j,1
)2

+ r`(j)ϕ
`
j,1ϕ

`
j,2

)
f

[2]
`−1+j + r`(j)

(
ϕ`j,1
)3

f
[3]
`−1+j, j = 0, 1,

(4)
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for ` = 1, 2, . . . , N . We will assume that the quaternion curves are written in the
standard form, i.e.,

λ`0,0 = λ`1,0 = 1. (5)

This assumption is similar to assuming the standard form of a Bézier rational
curve, i.e., normalized weights at the first and the last control point which can
be obtained by a bilinear reparameterization (see e.g., [18]). The remaining six
free parameters λ`0,i and λ`1,i, i = 1, 2, 3, represent derivatives of the local scalar
function λ` at values t = 0 and t = 1, while ϕ`0,i and ϕ`1,i, i = 1, 2, 3, correspond
to derivatives of the local reparameterization function ϕ` at t = 0 and t = 1. Note
that, in order to obtain a regular reparameterization, the inequalities

ϕ`0,1 > 0, ϕ`1,1 > 0

must be fulfilled. Such a solution will be called admissible solution and the cor-
responding interpolating polynomial will be called admissible interpolating poly-
nomial. These twelve free parameters can be used to decrease the degree of the
motion. Namely, for each ` ∈ {1, 2, . . . , N} conditions (3) represent a system of
32 equations for the unknown coefficients of a quaternion q`. Clearly, a degree
seven quaternion curve would be sufficient for the solution to exist if all the addi-
tional parameters would be fixed in advance. But, considering them to be free, one
can try to use q` of degree four with 4× 5 = 20 degrees of freedom to fulfill (3).
With such a quaternion, equations (3) represent a nonlinear system of 32 equa-
tions for 32 unknowns, i.e., coefficients of q` and λ`j,i, ϕ

`
j,i, j = 0, 1, i = 1, 2, 3.

The corresponding rational motion is of degree eight which is much less then the
degree 14 motion derived from a degree seven quaternion polynomial.

To simplify the further analysis, let us assume that

det(Q`−1,Q`,U `−1,U `) 6= 0, ` = 1, . . . , N. (6)

Then on each spline segment `, curvature quaternions can be expressed as

U
[2]
`+j−1 = α`j,0Q`−1 + α`j,1Q` + α`j,2U `−1 + α`j,3U `, (7)

U
[3]
`+j−1 = β`j,0Q`−1 + β`j,1Q` + β`j,2U `−1 + β`j,3U `, (8)

for j = 0, 1.
In the next section a solvability of equations (3) that determine a rotational

part of the interpolatory motion defined by quaternion polynomials q` of degree
four is revealed. Once a spherical part of the motion is determined, the trajectory

6



c can be computed using polynomials w`, ` = 1, 2, . . . , N , that fulfill (4). In order
for w` to be uniquely defined, we must choose them to be of degree seven. Since
the final motion would be of degree eight, one can choose also w` as polynomial
curves of degree eight which gives additional parameters of freedom that can be
used to adjust a shape of the motion. More details on a construction of trajectory
c can be found in [16].

4. Analysis of a rotational part of the motion

From the previous section it is clear that the construction of the motion is
completely local once all the interpolation data are provided. The analysis of the
equations can thus be limited only to one segment of the spline. Let us choose this
to be the first segment, i.e., ` = 1. To simplify the notation, the upper indices that
denote the segment will be omitted throughout this section.

The unknown quaternion polynomial q1 can be expressed in a Bernstein–
Bézier basis as

q1(t) =
4∑
i=0

Bib
4
i (t), t ∈ [0, 1],

where Bi are control points/quaternions and b4i (t) =
(
4
i

)
ti(1 − t)4−i is the i-th

Bernstein basis polynomial of degree four. Using some basic properties of Bézier
curves, one obtains from (3) the equations

B0 = Q0,

B1 = B0 +
1

4
(ϕ0,1U 0 + λ0,1Q0) =

1

4
(λ0,1 + 4)Q0 +

1

4
ϕ0,1U 0, (9)

B2 = 2B1 −B0 +
1

12

(
λ0,2Q0 + 2λ0,1U 0ϕ0,1 + ϕ2

0,1U
[2]
0 + ϕ0,2U 0

)
(10)

=
1

12
(6λ0,1 + λ0,2 + 12)Q0 +

1

12
(2 (λ0,1 + 3)ϕ0,1 + ϕ0,2)U 0 +

1

12
ϕ2
0,1U

[2]
0 ,

B3 = 3B2 − 3B1 +B0 +
1

24

(
λ0,3Q0 + 3λ0,2ϕ0,1U 0 + 3λ0,1ϕ

2
0,1U

[2]
0

+ 3λ0,1ϕ0,2U 0 + ϕ3
0,1U

[3]
0 + 3ϕ0,2ϕ0,1U

[2]
0 + ϕ0,3U 0

)
(11)

=
1

24
(18λ0,1 + 6λ0,2 + λ0,3 + 24)Q0 +

1

24
(3 (4λ0,1 + λ0,2 + 6)ϕ0,1

+3 (λ0,1 + 2)ϕ0,2 + ϕ0,3)U 0 +
1

8
ϕ0,1 ((λ0,1 + 2)ϕ0,1 + ϕ0,2)U

[2]
0 +

1

24
ϕ3
0,1U

[3]
0 ,
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which guarantee that q1 interpolates given quaternion data at the left end point,
and the equations

B4 = Q1,

B3 = B4 −
1

4
(ϕ1,1U 1 + λ1,1Q1) =

1

4
(4− λ1,1)Q1 −

1

4
ϕ1,1U 1, (12)

B2 = 2B3 −B4 +
1

12

(
λ1,2Q1 + 2λ1,1ϕ1,1U 1 + ϕ2

1,1U
[2]
1 + ϕ1,2U 1

)
(13)

=
1

12
(−6λ1,1 + λ1,2 + 12)Q1 +

1

12
(2 (λ1,1 − 3)ϕ1,1 + ϕ1,2)U 1 +

1

12
ϕ2
1,1U

[2]
1 ,

B1 = 3B2 − 3B3 +B4 −
1

24

(
λ1,3Q1 + 3λ1,2ϕ1,1U 1 + 3λ1,1ϕ

2
1,1U

[2]
1

+ 3λ1,1ϕ1,2U 1 + ϕ3
1,1U

[3]
1 + 3ϕ1,2ϕ1,1U

[2]
1 + ϕ1,3U 1

)
(14)

=
1

24
(−18λ1,1 + 6λ1,2 − λ1,3 + 24)Q1 −

1

24
(−3 (4λ1,1 − λ1,2 − 6)ϕ1,1

+3 (λ1,1 − 2)ϕ1,2 + ϕ1,3)U 1 −
1

8
ϕ1,1 ((λ1,1 − 2)ϕ1,1 + ϕ1,2)U

[2]
1 −

1

24
ϕ3
1,1U

[3]
1

for the interpolation at the right end point. Identifying the equations for the inner
control points, i.e., (9) and (14), (10) and (13), (11) and (12), we derive three
quaternion equations

0 =6 (λ0,1 + 4)Q0 + (18λ1,1 − 6λ1,2 + λ1,3 − 24)Q1

+ 6ϕ0,1U 0 + (−3 (4λ1,1 − λ1,2 − 6)ϕ1,1 + 3 (λ1,1 − 2)ϕ1,2 + ϕ1,3)U 1

+ 3ϕ1,1 ((λ1,1 − 2)ϕ1,1 + ϕ1,2)U
[2]
1 + ϕ3

1,1U
[3]
1 ,

0 = (6λ0,1 + λ0,2 + 12)Q0 + (6λ1,1 − λ1,2 − 12)Q1 + ϕ2
0,1U

[2]
0 − ϕ2

1,1U
[2]
1

+ (2 (λ0,1 + 3)ϕ0,1 + ϕ0,2)U 0 − (2 (λ1,1 − 3)ϕ1,1 + ϕ1,2)U 1,

0 = (18λ0,1 + 6λ0,2 + λ0,3 + 24)Q0 + 6 (λ1,1 − 4)Q1

+ (3 (4λ0,1 + λ0,2 + 6)ϕ0,1 + 3 (λ0,1 + 2)ϕ0,2 + ϕ0,3)U 0 + 6ϕ1,1U 1

+ 3ϕ0,1 ((λ0,1 + 2)ϕ0,1 + ϕ0,2)U
[2]
0 + ϕ3

0,1U
[3]
0 .

Recall assumptions (6) and insert expansions (7) and (8) for ` = 1 and j = 0, 1
into these equations. Since a linear combination of linearly independent quater-
nions can be zero only in the case when all the coefficients in the combination are
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zero, we obtain twelve scalar equations for twelve unknown parameters,

0 =3αj,jϕj,1ϑj + βj,jϕ
3
j,1 + 18λj,1 + λj,3 + (−1)j (24 + 6λj,2) ,

0 =3αj,1−jϕj,1ϑj + βj,1−jϕ
3
j,1 + 6λ1−j,1 + 24(−1)j+1,

0 =3αj,3−jϕj,1ϑj + βj,3−jϕ
3
j,1 + 6ϕ1−j,1,

0 =3αj,2+jϕj,1ϑj + βj,2+jϕ
3
j,1 + 3ϕj,1

(
6 + λj,2 + 4(−1)jλj,1

)
+

3
(
λj,1 + 2(−1)j

)
ϕj,2 + ϕj,3,

0 =α0,jϕ
2
0,1 − α1,jϕ

2
1,1 + 6λj,1 + (−1)j (λj,2 + 12) ,

0 =α0,2+jϕ
2
0,1 − α1,2+jϕ

2
1,1 + (−1)j

(
ϕj,2 + 2ϕj,1(λj,1 + 3(−1)j)

)
, (15)

for j = 0, 1, where

ϑj := ϑj(λj,1, ϕj,1, ϕj,2) := (λj,1 + 2(−1)j)ϕj,1 + ϕj,2, j = 0, 1.

Although this is a system of nonlinear equations, it turns out that from the first ten
equations ten unknowns can be explicitly expressed in terms of ϕ0,1 and ϕ1,1 as

λj,1 =
1

6

(
(−1)1−j24− ϕ3

1−j,1β1−j,j
)
+

α1−j,j

6α1−j,2+j
ηj,

λj,2 =12 + α1−j,jϕ
2
1−j,1 + (−1)jβ1−j,jϕ3

1−j,1 − αj,jϕ2
j,1 −

(−1)jα1−j,j

α1−j,2+j
ηj,

λj,3 =
αj,j η1−j
αj,3−j

+
3α1−j,j ηj
α1−j,2+j

+ 6(α0,jϕ
2
0,1 − α1,jϕ

2
1,1)− βj,jϕ3

j,1−

3β1−j,jϕ
3
1−j,1 + 24(−1)j+1,

ϕj,2 =−
η1−j

3ϕj,1αj,3−j
− ϕj,1α1−j,j ηj

6α1−j,2+j
+

1

6
ϕj,1

(
β1−j,jϕ

3
1−j,1 + 12(−1)j

)
,

ϕj,3 =ϕj,1

(
3αj,jϕ

2
j,1 + 6− βj,2+jϕ2

j,1 +
1

12
β2
1−j,jϕ

6
1−j,1 − 3ϕ2

1−j,1α1−j,j + (−1)j·

β1−j,jϕ
3
1−j,1

)
+
ϕj,1α

2
1−j,j η

2
j

12α2
1−j,2+j

+
ϕj,1

(
(−1)j+1α1−j,j ηj(6 + (−1)jβ1−j,jϕ3

1−j,1)
)

6α1−j,2+j
+

α1−j,j η0 η1
6α1,2α0,3ϕj,1

+
η1−j

6αj,3−jϕj,1

(
6ϕj,1αj,2+j − β1−j,jϕ3

1−j,j − 12(−1)j
)
,

(16)

for j = 0, 1, where

η` := η`(ϕ0,1, ϕ1,1, β1−`,2+`) := 6ϕ`,1 + β1−`,2+` ϕ
3
1−`,1, ` = 0, 1,
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under the assumption that α0,3 6= 0, α1,2 6= 0. Moreover, by inserting the expres-
sions for λj,1, ϕj,2, j = 0, 1, into (15) one obtains two polynomial equations of
total degree five for the remaining two unknowns ϕ0,1 and ϕ1,1:

0 =ϕ3
1,1ϕ

2
0,1α0,3 (α1,0β1,2 − α1,2β1,0)− 2ϕ3

0,1 (α1,2β0,3 − 3α0,3(α1,0 + α0,2α1,2))

− 6ϕ2
1,1ϕ0,1α0,3α

2
1,2 − 12ϕ1,1α1,2, (17)

0 =ϕ2
1,1ϕ

3
0,1α1,2 (α0,3β0,1 − α0,1β0,3) + 2ϕ3

1,1 (α0,3β1,2 − 3α1,2(α0,1 + α0,3α1,3))

+ 6ϕ1,1ϕ
2
0,1α

2
0,3α1,2 + 12ϕ0,1α0,3. (18)

Recall that we are interested only in finding positive solutions ϕ0,1 and ϕ1,1.
To further simplify equations (17) and (18), we divide them by ϕ1,1 and ϕ0,1,
respectively, and we introduce new unknowns u and v by

u := ϕ0,1ϕ1,1, v :=
ϕ3
0,1

ϕ1,1

. (19)

Note that there is a one-to-one correspondence between positive solutions (ϕ0,1,
ϕ1,1) and positive (u, v). The obtained equations for the unknowns u and v have
the advantage that the first equation is linear in the variable v which gives

v =
u2α0,3 (α1,2β1,0 − α1,0β1,2) + 6uα2

1,2α0,3 + 12α1,2

2α1,2 (3α0,2α0,3 − β0,3) + 6α1,0α0,3

=: V (u). (20)

Moreover, using (20), the second equation reduces to a quartic equation for u

0 = u4 (α1,2β1,0 − α1,0β1,2) (α0,3β0,1 − α0,1β0,3) + 6u3
(
α2
1,2 (α0,3β0,1 − α0,1β0,3)

+α2
0,3α1,2β1,0 − α1,0α

2
0,3β1,2

)
− 4u2A+ 144uα1,2α0,3 + 144, (21)

where

A = −3α0,3β1,0 − 3α0,2α0,3β1,2 − 3α1,2β0,1 − 3α1,2α1,3β0,3 − 9α2
1,2α

2
0,3

+ 9α0,2α1,2α1,3α0,3 + 9α0,1α0,2α1,2 + 9α1,0 (α0,1 + α0,3α1,3) + β1,2β0,3.

Thus we managed to reduce the starting nonlinear system of twelve equations to
a single quartic equation, for which the solutions could be (theoretically) written
explicitly using e.g., Ferrari’s formula. Of course for numerical computations one
can use any of the stable algorithms to compute all the real roots of a degree four
polynomial. The obtained results are summarized in the following theorem.
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Theorem 1. Suppose that (6) holds true and let α`1,2 6= 0, α`0,3 6= 0. If there exists
at least one positive solution u of (21) for which also V (u) in (20) is positive, then
there exists an admissible quartic polynomial q` satisfying (3) with λ`0,0 = λ`1,0 =
1, where λ`j,i and ϕ`j,i, j = 0, 1, i = 1, 2, 3, are determined by (16) and (19), where
in all unknowns the superscript ` is omitted.

If the condition (6) is violated, then one can choose any other four linearly inde-
pendent quaternions from the set

{
Q`+j−1,U `+j−1,U

[2]
`+j−1,U

[3]
`+j−1, j = 0, 1

}
,

and express the remaining four similarly as in (7)–(8). The analysis on the exis-
tence of the solution is then quite similar and a final equation is of degree four or
less. Since there are really many particular cases to be examined, it is impossible
to include them all in the paper. Instead, since Q`−1 6= Q` by the assumption, one
can slightly change the first order derivatives to achieve (6) to be true.

Another assumption in Theorem 1 is that α`1,2 6= 0, α`0,3 6= 0. If α`1,2 = 0, then
U

[2]
` lies in a subspace spanned by Q`−1, Q` and U `. Similarly for α`0,3 = 0, the

quaternion U
[2]
`−1 lies in a subspace spanned by Q`−1, Q` and U `−1. These two

particular cases can again be analysed separately which leads to a different final
equation of degree four or less if both of the coefficients are zero.

It is quite clear that even under the suppositions of Theorem 1 a positive pair
(u, v) of solutions of (20)-(21) does not exist for all possible data configurations.
If this is the case one can try to perturb given data or one can insert additional ones
in such a way that the positivity of the solution is guaranteed. For this reason we
have to find explicit conditions stated only on the given data configurations, but
such an analysis seems to be a hard nut to crack due to all the constants involved in
(20) and (21). Instead, some sufficient conditions are provided in the next section.

5. Solvability conditions for a rotational part of the motion

In this section, the existence of an admissible G3 spline interpolant is con-
sidered. First, the problem is analysed locally and some sufficient bounds on
positions of the curvature quaternions U

[3]
i are derived. Since an admissible in-

terpolant does not exist for all possible data configurations we proceed as fol-
lows. We require from a user to prescribe only positions, velocity quaternions and
the first order curvature quaternions for the spline motion construction, and we
show that after some possible slight modifications of the given first order curva-
ture quaternions the remaining curvature quaternions U

[3]
i can always be chosen

in such a way that an admissible G3 spline interpolant exists.

11



5.1. Solvability conditions for one spline segment
Without loss of generality we can analyse the first segment, i.e., ` = 1, only.

Again, the upper indices that denote the segment will be omitted. Let us first
examine the sufficient conditions for the solution u of (21) to be positive. As the
value of a quartic polynomial from (21) is positive for u = 0, a negative leading
coefficient of this quartic polynomial would imply the existence of at least one
positive root. The leading coefficient is negative if

B0B1 < 0, (22)

where
B0 := α0,3β0,1 − α0,1β0,3, B1 := α1,2β1,0 − α1,0β1,2. (23)

Thus, (22) is a sufficient criteria for a positive solution u of (21) to exist. It remains
to examine the positivity of v in (20) after the solution u of (21) is inserted. To
exclude the effect of the magnitude of u on the positivity of v, we proceed to find
conditions for v to be positive for every real value u. Since V (u) is a quadratic
polynomial in a variable u we first require that its discriminant is negative, i.e.,

D = 12α1,2α0,3

(
3α3

1,2α0,3 − 4B1

)
< 0. (24)

Under this condition, V (u) will be positive for every u iff

sign (2α1,2 (3α0,2α0,3 − β0,3) + 6α1,0α0,3) = sign (α1,2) . (25)

One can observe that the conditions (22), (24) and (25) can be satisfied by ma-
nipulating only the unknowns βj,i, j = 0, 1, i = 0, 1, 2, 3, that correspond to the
second order curvature quaternions. To prove this, four different cases depending
on the signs of α1,2 and α0,3 need to be considered. It it straightforward to see that
(22) and (24) are fulfilled iff

3

4
|α1,2 α0,3|α2

1,2 < sign(α1,2α0,3)B1, sign(α1,2α0,3)B0 < 0.

By inserting (23) we derive the following two conditions on β0,1, β0,3, β1,0, β1,2:

3

4
α2
1,2|α0,3|+ sign(α0,3)

α1,0

α1,2

β1,2 < sign(α0,3)β1,0,

sign(α1,2)β0,1 < sign(α1,2)
α0,1

α0,3

β0,3.

12



Additional condition on β0,3 follows from (25) as

β0,3 <
3α0,3

α1,2

(α1,0 + α1,2α0,2) .

In the next theorem the derived results are summarized and applied to a general
spline segment.

Theorem 2. Suppose that (6) holds true and let α`1,2 6= 0, α`0,3 6= 0. If the co-
efficients β`j,i, j = 0, 1, i = 0, 1, 2, 3, that determine the second order curvature
quaternions (8) satisfy the inequalities

α̂`1 + α̂`2 β
`
1,2 < sign(α`0,3) β

`
1,0, (26)

sign(α`1,2) β
`
0,1 < α̂`3 β

`
0,3, β`0,3 < α̂`4, (27)

where

α̂`1 :=
3

4

(
α`1,2
)2 ∣∣α`0,3∣∣ , α̂`2 := sign(α`0,3)

α`1,0
α`1,2

,

α̂`3 := sign(α`1,2)
α`0,1
α`0,3

, α̂`4 :=
3α`0,3
α`1,2

(
α`1,0 + α`1,2α

`
0,2

)
,

then there exists an admissible G3 interpolant q` of degree four.

Theorem 2 states simple sufficient conditions on parameters β`j,i, which are such
that the conditions for the left and the right second order curvature quaternions of
each segment are separated.

5.2. Solvability conditions for the spline
The usual price to be paid for using geometric interpolation methods instead

of some linear schemes is to put some limitations on the given data in order to
obtain admissible solution. Theorem 2 shows that under some natural restrictions
a local G3 interpolant q` exists provided the second order curvature quaternions
U

[3]
`−1,U

[3]
` lie in an appropriate region. Unfortunately, each spline segment has

its own admissible region and it is not trivial to see whether the intersections are
nonempty. Let us examine this problem more precisely. Namely, let us assume
that Qi, U i and U

[2]
i , i = 0, 1, . . . , N , are given, such that (6) and

α`0,3 6= 0, α`1,2 6= 0 (28)

13



hold true for every ` = 1, 2, . . . , N , and let us consider regions for
(
U

[3]
i

)N
i=0

that

assure the existence of an admissible G3 spline motion.
Consider the two neighboring segments ` and `+1. The second order curvature

quaternion at the middle position Q` can by (8) be expressed in two different ways.
Namely as

U
[3]
` = β`1,0Q`−1 + β`1,1Q` + β`1,2U `−1 + β`1,3U `

or as
U

[3]
` = β`+1

0,0 Q` + β`+1
0,1 Q`+1 + β`+1

0,2 U ` + β`+1
0,3 U `+1.

The coefficients
(
β`1,j
)3
j=0

and
(
β`+1
0,j

)3
j=0

must thus be connected as(
β`1,0, β

`
1,1, β

`
1,2, β

`
1,3

)>
= C

(
β`+1
0,0 , β

`+1
0,1 , β

`+1
0,2 , β

`+1
0,3

)>
, (29)

where

C := (ci,j)
4
i,j=1 = (Q`−1,Q`,U `−1,U `)

−1(Q`,Q`+1,U `,U `+1).

Note that by (7) the same arguments imply(
α`1,0, α

`
1,1, α

`
1,2, α

`
1,3

)>
= C

(
α`+1
0,0 , α

`+1
0,1 , α

`+1
0,2 , α

`+1
0,3

)>
. (30)

It is straightforward to see that (ci,1)4i=1 = (0, 1, 0, 0)> and (ci,3)
4
i=1 = (0, 0, 0, 1)>.

Therefore by (6) also c1,2c3,4 − c1,4c3,2 6= 0. Recall that in Theorem 2 the quater-
nion U

[3]
` is implicitly involved only in inequality (26) for the left hand side seg-

ment and in inequalities (27) for the right hand side one. Using (29) this gives

α̂`1 + α̂`2
(
c3,2β

`+1
0,1 + c3,4β

`+1
0,3

)
< sign(α`0,3)

(
c1,2β

`+1
0,1 + c1,4β

`+1
0,3

)
, (31)

sign(α`+1
1,2 ) β

`+1
0,1 < sign(α`+1

1,2 )
α`+1
0,1

α`+1
0,3

β`+1
0,3 , β`+1

0,3 < α̂`+1
4 . (32)

Relations (31) and (32) represent three inequalities for β`+1
0,1 and β`+1

0,3 . Let us
consider them more precisely. First note that by (30) we obtain, among others, the
following relation (

c1,2 c1,4
c3,2 c3,4

)(
α`+1
0,1

α`+1
0,3

)
=

(
α`1,0
α`1,2

)
. (33)

Inequality (31) can be rewritten to

sign(α`0,3)

α`1,2

(
β`+1
0,1

(
c3,2α

`
1,0 − c1,2α`1,2

)
+ β`+1

0,3

(
c3,4α

`
1,0 − c1,4α`1,2

))
+ α̂`1 < 0

14



and further by using (33) to

σ1
(
α`+1
0,3 β

`+1
0,1 − α`+1

0,1 β
`+1
0,3 + ν

)
< 0, ν :=

3 (α`1,2)
3α`0,3

4 (c1,4c3,2 − c1,2c3,4)
6= 0, (34)

where
σ1 = sign(α`0,3) sign(α

`
1,2) sign(c1,4c3,2 − c1,2c3,4).

Moreover, the first inequality in (32) simplifies to

σ2
(
α`+1
0,3 β

`+1
0,1 − α`+1

0,1 β
`+1
0,3

)
< 0, σ2 = sign(α`+1

0,3 ) sign(α
`+1
1,2 ). (35)

By (34) and (35) one observes that the lines in
(
β`+1
0,1 , β

`+1
0,3

)
–plane that determine

the boundaries of both regions are parallel, but by (28) not parallel to the abscissa
line β`+1

0,3 = 0. Also one of them is passing through the origin (β`+1
0,1 , β

`+1
0,3 )> =

(0, 0)> (see Fig. 1, left). Since the last region given by the second inequality in
(32) is bounded by the horizontal line β`+1

0,3 = α̂`+1
4 , an empty intersection of all

the three regions could happen only if

σ1 = 1, σ2 = −1, ν > 0 or σ1 = −1, σ2 = 1, ν < 0. (36)

Since it is straightforward to see that sign(ν) = σ1, one has to assure σ1 = σ2 in
order to avoid undesired situations (36). More precisely, the following condition
has to be fulfilled

sign(α`0,3) sign(α
`
1,2) sign(c1,4c3,2 − c1,2c3,4) = sign(α`+1

0,3 ) sign(α
`+1
1,2 ). (37)

This proves that if the condition (37) is fulfilled, we can always find appropriate
β`+1
0,1 and β`+1

0,3 , while parameters β`+1
0,0 and β`+1

0,2 are completely free to be chosen.
In the case (37) does not hold true, we first have to modify some of the parameters
α`i,j and α`+1

i,j , which implies modification of the first curvature quaternions. In
order to preserve the locality, we can only modify parameters α`1,i and α`+1

0,i , i ∈
{0, 1, 2, 3}. The whole procedure is presented in Algorithm 1.

For the choice of the parameters in Algorithm 1, we propose the following
procedure that provides good numerical results. We choose β`+1

0,0 = β`+1
0,2 = 0 for

` = 0, 1, . . . , N−1, and βN1,1 = βN1,3 = 0. In Line 10 of the algorithm there are two

possible regions, determined by (31) and (32), where the point
(
β`+1
0,1 , β

`+1
0,3

)>
can

be chosen from (points P1 and P2 in Fig. 1), and the appropriate one is determined
by the sign of σ1 = σ2. We then choose it on the corresponding angle bisector with
the distance γ from the intersection of the two lines determining the appropriate
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Algorithm 1 Computation of second order curvature quaternions.

Input: Quaternions Qi,U i,U
[2]
i , i = 0, 1, . . . , N

Output: Quaternions U [2]
i , i = 1, 2, . . . , N − 1, and U

[3]
i , i = 0, 1, . . . , N

1: Choose arbitrary β1
0,0, β

1
0,2;

2: Choose β1
0,1, β

1
0,3 that satisfy (27);

3: Compute U
[3]
0 = β1

0,0Q0 + β1
0,1Q1 + β1

0,2U 0 + β1
0,3U 1;

4: for ` = 1, 2, . . . , N − 1 do
5: if condition (37) is not fulfilled then
6: Modify parameters α`1,i and α`+1

0,i , i ∈ {0, 1, 2, 3}, in order to fulfill
(37);

7: Modify U
[2]
` = α`+1

0,0 Q` + α`+1
0,1 Q`+1 + α`+1

0,2 U ` + α`+1
0,3 U `+1;

8: for ` = 1, 2, . . . , N − 1 do
9: Choose arbitrary β`+1

0,0 and β`+1
0,2

10: Choose β`+1
0,1 and β`+1

0,3 that satisfy (31) and (32);
11: Compute U

[3]
` = β`+1

0,0 Q` + β`+1
0,1 Q`+1 + β`+1

0,2 U ` + β`+1
0,3 U `+1;

12: Choose arbitrary βN1,1, β
N
1,3;

13: Choose βN1,0, β
N
1,2 that satisfy (26);

14: Compute U
[3]
N = βN1,0QN−1 + βN1,1QN + βN1,2UN−1 + βN1,3UN ;

region (see Fig. 1, left). In practical applications, parameter γ could be determined
using some optimization or minimization approach. Perhaps, one could minimize
the average of the stretch and the band energies of the quaternion curves (see [16],
e.g.). Alternatively, one could try to minimize the perturbation of the computed
and the user-given second order curvature quaternions. Similarly we proceed in
Line 2 of the algorithm (see Fig. 1, right). In Line 13 of the algorithm we replace
the role of the angle bisectors by the line perpendicular to the line determining
(26) through the intersection with the ordinate line and two possible candidates
are chosen at distance 1 from the intersection point. It remains only to explain
how to modify parameters α`i,j and α`+1

i,j in Line 6 of the algorithm. One of the
possible ways is the following:

(α`+1
0,3 )new := −α`+1

0,3 , (α`1,i)new := (α`1,i), i = 1, 2, 3,

and all the remaining parameters

(α`1,0)new, (α
`+1
0,0 )new, (α

`+1
0,1 )new and (α`+1

0,2 )new

change accordingly to (30).
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6. Numerical examples

In this section some numerical examples of spline motions of degree eight are
presented.

Example 1 Suppose that we are given a smooth motion defined by the quaternion
curve q̃,

q̃ =
q

‖q‖
, q(s) =

(
s2 + 1, 3 sin

(πs
4

)
, 2 cos

(πs
4

)
,
1

2

√
s2 + 1

)>
. (38)

The orientations and the corresponding derivative data are sampled as

Qi = q̃(si), U i = q̃′(si), U
[j]
i = q̃(j)(si), j = 2, 3. (39)

where si = 0, 1, . . . , 5. On each spline segment we first solve the quartic equation
(21) for u. In this case, we obtain at least one positive solution for every pair of
neighboring quaternion data. If there exists more than one admissible solution, u
is chosen such that the length of the corresponding quaternion interpolant is mini-
mal. Solving (20), we obtain also positive v on each spline segment. We consider
the substitution (19) and from (16) we compute the remaining ten unknowns that
determine the control quaternions. Fig. 2 (left) shows the obtained spherical mo-
tion of degree eight. The interpolating orientations are denoted by bold cuboids.
The trajectory Rp̂ of a cuboid center p̂, which is a spherical rational curve of
degree eight lying on the sphere centered at the origin with radius ‖p̂‖, is shown
in Fig. 2 (right) together with the center trajectory of the original motion (thin
curve). Both trajectories almost coincide.

Example 2 Let the data again be sampled from (38) as Qi,U i and U
[2]
i given by

(39) for i = 0, 1, . . . , 5, and let us determine the second order curvature quater-
nions by Algorithm 1, considering the procedure proposed in the previous section.
At the second and fourth position the inequality (37) is not satisfied and U

[2]
1 and

U
[2]
3 are modified in order to fulfill this condition. We choose γ = 230 and com-

pute the unknown U
[3]
i , i = 0, 1, . . . , 5. The corresponding spherical motion of

degree eight is shown in Fig. 3 (left) where six interpolating orientations are de-
noted by bold cuboids. In Fig. 3 (right), a comparison between center trajectories
of the original (thin curve) and the obtained G3 (thick curve) motion, is given.
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Example 3 Now, suppose that the interpolation data are listed in the Table 1. To
determine the second order curvature quaternions we use Algorithm 1 and the
procedure that is proposed in the previous section. The parameter γ is set to 1200.
The obtained spherical G3 motion is shown in Fig. 4 (left), where interpolation
orientations are presented by bold cuboids. The corresponding center trajectory is
presented in Fig. 4 (right).

Example 4 Finally, let us consider a case where only the orientations and velocity
quaternions are given, without curvature quaternions of the first and second order.
To construct G3 spline motion, the remaining derivative data must be estimated
from the input data, e.g., by using local polynomials of degree nine. In Table 2,
eight positions are listed. The required curvature quaternions U [2]

i and U
[3]
i , i =

0, 1, . . . , 7, are taken from normalized local polynomials of degree nine, passing
through five consecutive orientations and velocity quaternions. Five consecutive
positions are considered in order to preserve the symmetry. We use centripetal
parameterization to construct local polynomials and on each spline segment we
obtain at least one positive pair (u, v), determined by (20) and (21). The obtained
curvature data are listed in Table 3. The corresponding spherical motion of degree
eight, composed of seven segments (left) and the interpolation orientations (right)
are shown in Fig. 5.

7. Conclusion

The paper presents an interpolation scheme to construct a G3 continuous ra-
tional spline motion of degree eight that interpolates eight motion data on each
polynomial segment. In contrast to standard interpolation methods, where the
parameterization is prescribed in advance, geometric approach allows us to sig-
nificantly lower the degree of a rotational part of the motion, described here by
quaternion polynomials. In particular, the existence of a quaternion polynomial
of degree four that interpolates eight quaternions, which represent positions and
derivative information up to the order three, is examined and the problem is re-
duced to the analysis of one quartic equation. Sufficient conditions for an admis-
sible solution to exist are given, that can be used completely locally in a spline
setting. An algorithm for modifying curvature quaternions to have the existence
of a solution guaranteed is proposed and numerical examples that illustrate the
theoretical results are presented.

The analysis of the approximation order, which is expected to be eight, opti-
mization approaches in Algorithm 1 and the determination of free parameters in a
translational part of the motion could be interesting topics for future research.

18



References

[1] A. Piazzi, M. Romano, C. Guarino Lo Bianco, Smooth path planning for
wheeled mobile robots using G3-splines, Technical Report TSC-02/03, Di-
partimento di Ingegneria dell’Informazione, Università di Parma, 2003.
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P2P1

Β0,1
!"1

Β0,3
!"1

P2P1

Β0,1
!"1

Β0,3
!"1

Figure 1: Three lines determining regions in (31) and (32) split the plane into six domains, among
which only two are possible candidates where the point

(
β`+1
0,1 , β

`+1
0,3

)>
could be chosen from

(left). For the first segment only two lines determine regions in (27) (right).

Figure 2: Six orientations of a cuboid interpolated by a spherical motion of degree eight (left) and
two trajectories of cuboid center (right), one of the original (thin curve) and one of the obtained
G3 (thick curve) motion.
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Figure 3: Six orientations of a cuboid interpolated by a spherical motion of degree eight (left)
obtained by Algorithm 1 and two trajectories of cuboid center (right), one of the original (thin
curve) and one of the obtained G3 (thick curve) motion.

Figure 4: Six orientations of a cuboid interpolated by a spherical motion of degree eight (left)
obtained by Algorithm 1 and the corresponding trajectory of a cuboid center (right).

i Q>
i U>

i

(
U

[2]
i

)>

0 (0.82045, 0.54697, 0.13674, 0.094782) (-1.5, 2.4, -0.26, -0.18) (-1.353, -13.485, 1.500, 0.039)
1 (0.33602, 0.92828, 0.15154, 0.049157) (-0.45, 0.13, 0.21, -0.023) (1.139, -0.787, 0.492, 0.151)
2 (0.19607, 0.92430, 0.32350, 0.050772) (-0.18, -0.14, 0.51, 0.023) (0.174, -0.654, 0.797, 0.065)
3 (0.10799, 0.72020, 0.68193, 0.068048) (-0.20, -0.80, 0.88, 0.036) (-0.180, -2.024, 0.037, -0.059)
4 (0, 0.15760, 0.98498, 0.070594) (-0.19, -1.1, 0.18, -0.029) (0.289, 1.450, -1.552, -0.085)
5 (-0.05841, -0.18604, 0.97933, 0.05368) (-0.06, -0.30, -0.058, -0.03) (0.155, 1.255, 0.148, 0.033)

Table 1: Six given orientations, i.e., unit quaternions and the corresponding derivative data.
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Figure 5: Eight orientations of a cuboid interpolated by spherical spline motion of degree eight
(left) and the corresponding trajectory of a cuboid center (right).

i Q>
i U>

i

0 (0.224851, 0.618311, 0.399232, 0.638551) (0.530909, -0.443629, 0.930039, -0.338856)
1 (0.333866, 0.495794, 0.586485, 0.546587) (0.348036, -0.507894, 0.57974, -0.373949)
2 (0.464081, 0.227317, 0.776956, 0.359577) (0.13301, -0.370011, 0.140488, -0.241315))
3 (0.520945, 0.0580751, 0.812909, 0.253817) (0.0849161, -0.253027, 0.0112832, -0.152529)
4 (0.549005, -0.0205116, 0.80963, 0.206571) (0.0769946, -0.197804, -0.0266713, -0.119735)
5 (0.6176956, -0.1455922, 0.7632878, 0.1210241) (0.0778027, -0.0841554, -0.0667376, -0.0774288)
6 (0.664775, -0.175622, 0.721838, 0.0786243) (0.0781429, -0.0166773, -0.0689334, -0.0650893)
7 (0.708952, -0.16732, 0.683796, 0.0425932) (0.0697368, 0.0432317, -0.0581471, -0.05742)

Table 2: Eight given orientations, i.e., unit quaternions and the corresponding velocity quaternions.

i
(
U

[2]
i

)> (
U

[3]
i

)>

0 (-266.86, 180.961, -468.308, 132.156) (-266.86, 180.961, -468.308, 132.156)
1 (-46.933, 20.7791, -89.6946, 18.2155) (-46.933, 20.7791, -89.6946, 18.2155)
2 (16.3496, -32.5486, 23.7482, -23.5737) (16.3496, -32.5486, 23.7482, -23.5737))
3 (16.8544, 53.0396, 4.92389, 31.925) (-16.8544, 53.0396, 4.92389, 31.925)
4 (17.3494, -19.3385, -14.6186, -15.7197) (17.3494, -19.3385, -14.6186, -15.7197)
5 (41.165, -63.1912, -35.0628, -50.6554) (41.165, -63.1912, -35.0628, -50.6554)
6 (17.9138, -5.3353, -15.6819, -16.1321) (17.9138, -5.3353, -15.6819, -16.1321)
7 (-0.12887, 1.04352, 0.357228, 0.0990213) (27.3592, 16.9671, -22.7922, -23.6025)

Table 3: Eight additional derivative data, i.e., curvature quaternions of the first and second order,
estimated by using normalized local polynomials of degree nine.
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