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Abstract. This  paper  presents  a  data  
structure for storing and querying sets. The 
data structure is based on tries, but because  
the  order  of  elements  in  a  set   is  not 
important (unlike letters in a string) we are 
able  to  implement  additional  subset  and 
superset query operations besides the trie's  
insert and search operation. The operations  
and  their  algorithms  are  described.  We 
empirically  analyze  the  operations  in  a 
series of experiments and present the results.  
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1. Introduction

Let us begin with a formal definition of the 
problem: let U be a set of ordered symbols, S a 
set of subsets from U, and let X be a subset of U. 
We are interested in the following queries:

1.is X a subset of any element from S?
2.is X a superset of any element from S?
3.enumerate  all  Y  in  S  such  that  X  is  a 
subset of Y

4.enumerate  all  Y  in  S  such  that  X  is  a 
superset of Y

The first  two queries  are  a  special  case  of  the 
third and fourth query.

Let us show an example of the first query. Let 
U = {1, 2, 3, ..., 100} and S = {{2, 4, 5, 7, 15}, 
{9,  12,  25},  {3,  5,  6,  10,  11,  24},  {9,  12,  25, 
38}}. If X = {3, 6, 11}, then X is a subset of {3, 
5, 6, 10, 11, 24}.

The  following is  an  example  of  the  second 
query. Let U = {1, 2, 3, ..., 100} and S = {{2, 4, 
5, 7, 15}, {9, 12, 25}, {3, 5, 6, 10, 11, 24}, {9, 
12, 25, 38}}. If X = {7, 9, 10, 12, 15, 25, 32}, 
then X is a superset of {9, 12, 25}.

A real-world scenario could be querying for 
objects having certain properties. In this case U 
would be a set of properties labeled with symbols 
(e.g. a=wooden, b=red, ...), S would be a set of 

objects having properties from U, and X would 
be a subset of properties. To list objects from S 
having all properties from X, we would run the 
third  query.  To  list  objects  from  S  having 
properties only from X, we would run the fourth 
query.

This  paper  presents  a  data  structure  named 
SetTrie and  its  algorithms  that  solve  the 
described problem efficiently.

SetTrie is a tree data structure similar to the 
well known trie tree. Like tries, its nodes contain 
symbols  and have pointers to child nodes.  The 
path  from  the  root  node  to  a  marked  node 
represents a set (nodes containing the last symbol 
of a set are marked). Unlike in tries where the 
order of letters in a string is important, in SetTrie 
we sort the symbols of a set before insertion. As 
a consequence all nodes below any chosen node 
contain symbols that are greater than the symbol 
in  the  chosen  node,  and  all  nodes  above  it 
contain  symbols  lesser  than  the  symbol  in  the 
chosen  node.  This  property  allows  us  to 
implement subset and superset query operations.

The operations are tested in three experiments 
where  we  analyze  how  the  change  of  one 
parameter  affects  the  performance  of  the  data 
structure.

1.1 Related work

Our  problem  is  somewhat  similar  to  the 
problem of  searching  substrings  in  strings  (for 
which Suffix trees can be used), but in our case 
the order in which the symbols appear in do not 
matter.

Baeza-Yates and Gonnet present an algorithm 
in  [1]  for  searching  regular  expressions  using 
Patricia trees as the logical model for the index. 
They simulate  a  finite  automata  over  a  binary 
Particia tree of words.

In [2] Charikar et. al. present two algorithms 
to deal with a subset query problem. They extend 
their  results  to  a  more  general  problem  of 
orthogonal range searching, and other problems.



Rivest  [3]  examines  the  problem  of  partial 
matching with the use of hash functions and Trie 
trees. He presents an algorithm for partial match 
queries using Tries.

The initial implementation of SetTrie was in 
the context of a datamining tool “fdep” where it 
serves  for  storing  and  retrieving  hypotheses  in 
the process of searching the theory of a relation 
[4].

2. SetTrie data structure

SetTrie is a tree data structure composed of 
nodes. Each node contains a symbol and an array 
of child nodes. A node with a symbol k can have 
children with symbols that are equal or greater 
than k. The latter is the key property of the data 
structure. SetTrie is not limited to sets, it works 
with multisets  as well.  For this  reason we will 
call (multi)sets in the tree words: unlike a set, a 
word may contain more than one occurrence of a 
symbol. Nodes have a boolean flag to mark the 
last symbol of a word.

Figure 1. Example of a SetTrie tree

In  Fig.1  we  show  an  example  of  SetTrie 
containing words {1, 2, 3, 5}, {1, 2, 5}, {1, 2, 5, 
6}, {4}, {4, 8, 9} and {11, 15, 22}. Nodes with a 
dashed inner circle represent flagged nodes.

2.1 Implementation

Our  data  structure  is  implemented  in  Java 
programming  language.  We  will  not  describe 
every detail of the implementation, but only what 
is  necessary  to  understand  the  operations 
described in the next section.

It is composed of two classes: the Tree class 
and the Node class. The Tree holds Nodes and 
implements  the  following  operations:  insert, 
search,  existsSuperSet,  getAllSuperSet, 
existsSubSet and getAllSubSet. An empty tree is 
composed  of  the  root  node  only.  Root  node 
contains an empty set ({}).

The  Node  class  has  four  attributes:  the 
symbol of the node, the array of child nodes, a 
boolean flag to mark the last symbol of a word, 
and  an  integer  for  counting  the  number  of 
children of a node. Symbols of the words must 
be integers (or converted to integers otherwise).

2.2 Operations

This section describes six operations and its 
algorithms  we  have  implemented  for  our  data 
structure. All operations are recursive. The insert 
and search operations work as in ordinary Tries. 

Insert operation inserts a given word into the 
tree.  Alg.  1  shows  the  operation  algorithm  in 
pseudocode.

1. insert(node, set, positionInSet)
2.  if positionInSet < set.length then
3.   if there is no node in child_array at element
      then
4.    create new_node with element and put it in
        child_array at element
5.     increase num_child in node
6.   if element is last in set then
7.     set the new_node's last_flag to true
8.   else
9.     insert(child_array at element, set,
        positionInSet+1)

Algorithm 1. The insert operation

The  initial  value  of  node is  root,  and 
positionInSet is 0.  set represents the word being 
inserted and  element is  a  symbol  of  the  word. 
positionInSet marks which symbol from the word 
is currently selected. In line 4 a symbol is stored 
in the array at position element  (ex. symbol 5 is 
stored at position 5). num_child is the counter for 
child nodes of a node. It is increased every time a 
node is created.

Search operation searches for a given word in 
the tree. It returns  true if it finds all symbols of 
the word (i.e. the word is in the tree), and false as 
soon one symbol is not found (i.e. the word is not 
in the tree). The algorithm is shown in Alg. 2.



1. search(node, set, positionInSet)
2.  if positionInSet < set.length then
3.   if there is no node in child_array at element
      then
4.     set is not in the tree, return false
5.   else
6.    if element is last in set then
7.     if node's last_flag  true then
8.       set is in the tree, return true
9.     else
10.      set is not in the tree, return false
11.   else
12.     search(child_array at element, set,
          positionInSet+1)

Algorithm 2. The search operation

The  initial  value  of  node is  root,  and 
positionInSet is 0. set is the word being searched 
for.  In  line  6  the  if-statement  is  true  if  the 
selected symbol is the last symbol of the given 
word.  In  line  7  the  if-statement  is  true,  if  the 
node contains a last symbol of a word.

ExistsSuperSet  operation  checks  if  there 
exists a superset in the tree of the given word. It 
returns  true if  a superset  is found, otherwise it 
returns  false. Alg. 3 represents the algorithm of 
the operation.

1. existsSuperSet(node, set, positionInSet, offset)
2.  if not found then
3.   if found node with the last element then
4.    found = true
5.   else
6.    for (offset; node with possible child exists
       and not found; offset++)
7.     if found node with not last element then
8.      existsSuperSet(node.child, set,
          positionInSet+1, offset)
9.     else if element not found but possible child
        with element exists then
10.     existsSuperSet(node.child, set,
          positionInSet, offset)
11. return found

Algorithm 3. The existsSuperSet operation

The  initial  value  of  node is  root,  found is 
false,  and  positionInSet is  0.  set is  the  given 
word, and offset is the offset in the array of child 
nodes. In line 3 the if-statement is true if the last 
symbol of the given word is found in a node. In 
line 6, the for-loop continues looping if a node 

with  possible  child  exists.  Here  the  operation 
takes  advantage  of  the  SetTrie  properties.  The 
array of child nodes is ordered, and child nodes 
cannot contain smaller symbols than the parent 
node. Also the child node counter is considered 
here.  If  all  these  criteria  are  met,  the  for-loop 
continues looping, otherwise false is returned.

GetAllSuperSet operation returns all existing 
supersets in the tree of the given word. It works 
similarly to the existsSuperSet  operation, but it 
does  not  stop  when  finding  the  first  superset. 
Instead  it  lists  all  the  words  contained  in  the 
nodes below such a node. Alg. 4 represents the 
algorithm of the operation.

1. getAllSuperSet(node, set, positionInSet,
     offset)
2.  if found node with last element then
3.   print all sets below this node
4.  else
5.   for (offset; node with possible child exists;
      offset++)
6.    if found node with not last element then
7.     getAllSuperSet(node.child, set,
         positionInSet+1, offset)
8.    else if element not found but node with
       possible child exists then
9.     getAllSuperSet(node.child, set,
         positionInSet, offset)

Algorithm 4. The getAllSuperSet operation

The  initial  value  of  node is  root, 
positionInSet  is  0,  and  set is  the  given word. 
There is a key difference between this algorithm 
and  the  algorithm  of  the  existsSuperSet 
operation: the for-loop in line 5 does not have a 
found check, so the print command in line 3, can 
be reached at different parts of the tree.

ExistsSubSet operation checks if there exists 
a subset in the tree of the given word. It returns 
true if  a  subset  is  found,  otherwise  it  returns 
false.  Alg.  5  represents  the  algorithm  of  the 
operation.

1. existsSubSet(node, set, positionInSet)
2.  if not found then
3.   if node with element found then
4.    if node's last_flag true then
5.     found = true
6.    else if element not last then
7.     existsSubSet(node.child, set,
        positionInSet+1)



8.   increase positionInSet until next element
      different from current element
9.    existssubset(node, set, positionInSet)
10. return found

Algorithm 5. The existsSubSet operation

The  initial  value  of  node is  root,  found is 
false,  positionInSet  is  0,  and  set is  the  given 
word. In line 4, the if-statement is true if a word 
in  the  tree  ends  in  that  node.  In  line  8  the 
algorithm takes the next symbol from the word if 
it is the same as the currently selected symbol.

GetAllSubSet  operation  returns  all  existing 
subsets in the tree of the given word. It  works 
similarly  to  the  existsSubSet  operation,  but  it 
does  not  stop  when finding  the  first  subset.  It 
stops when there are  no more  symbols  to take 
from the given word. The algorithm is shown in 
Alg. 6.

1. getAllSubSet(node, set, positionInSet)
2.  if found node with element then
3.   if node's last_flag true then
4.    print subset
5.   if element not last then
6.    getAllSubSet(node.child, set,
        positionInSet+1)
7.  increase positionInSet until next element
     different from current element
8.   getAllSubSet(node, set, positionInSet)

Algorithm 6. The getAllSubSet operation

The  initial  value  of  node is  root, 
positionInSet  is  0,  and  set is  the  given word. 
Line 4 prints the found subset of the given word.

3. Experiments

With  our  experiments  we  observe  how  the 
average  number  of  visited  nodes  for 
existsSuperSet, getAllSuperSet, existsSubSet and 
getAllSubSet operations change, while changing 
one  of  the  following  three  parameters:  the 
number  of  words in the tree,  the alphabet  size 
(how many different symbols there are), and the 
maximum  word  length.  We  mark  these 
parameters  as  numTreeWord,  alphabetSize and 
maxSizeWord.  The  minimum  word  length  was 
set to 2. The operation names are abbreviated as 
esr  (existsSuperSet),  gsr  (getAllSuperSet),  esb 
(existsSubSet) and gsb (getAllSubSet). For each 
of the three experiments the words in the tree and 

in the test set were randomly generated. Test set 
had  5000  words  and  were  generated  with  the 
same parameters  as  the  words  in  the  tree.  The 
words from the test set were used as inputs for 
the  operations.  The  averages  presented  in  this 
section  were  obtained  by  summing  up  the 
number of visited nodes for each word from the 
test  set,  and  dividing  it  by  the  number  of  the 
words in the test set.

In  experiment1  we  created  four  trees  with 
alphabetSize 30  and  numTreeWord 50,000. 
maxSizeWord was 20, 40,  60 and 80 for tree1, 
tree2, tree3 and tree4 respectively.  The number 
of  nodes  in  the  trees  were:  332,182,  753,074, 
1,180,922  and  1,604,698.  We  calculated  the 
average number of visited nodes for each word 
length  separately,  but  in  table  1  (due  to  space 
constraints)  we  present  the  sum  of  these 
averages.

When  we  increased  maxSizeWord,  the 
average number of visited increased for esr, gsr 
and gsb operations. We repeated the experiment 
multiple  times  and  the  esb  operation  was 
generally between 2 and 10, but sometimes also 
visiting  up  to  1000  nodes  for  any  tree.  This 
seems  to  be  dependent  on  what  words  were 
randomly  generated.  Because  the  words  were 
randomly  generated  between  2  and 
maxSizeWord,  gsr  and  gsb  found  more  results 
when the tree contained words of a greater size.

Table 1. Experiment1 results

esr gsr esb gsb

tree1 2830 21755 2 427

tree2 5318 57958 45 2833

tree3 7130 106177 2 8530

tree4 9497 175105 8 17903

Table 2.  Percentage of visited nodes

esr gsr esb gsb

tree1 0.85% 6.55% 0.001% 0.13%

tree2 0.71% 7.7% 0.01% 0.38%

tree3 0.6% 8.99% 0.0002% 0.72%

tree4 0.59% 10.91% 0.001% 1.12%

Table 2 shows the percentage of visited nodes 
in  experiment1.  For  the  esr  operation  the 
percentage of visited nodes decreases when the 



word  length  increases,  and  for  gsr  and  gsb  it 
increases.

Table 3. Number of nodes in trees

numTreeWord nodes

tree1 10000 115780

tree2 20000 225820

tree3 30000 331626

tree4 40000 437966

tree5 50000 541601

tree6 60000 644585

tree7 70000 746801

tree8 80000 846388

tree9 90000 946493

tree10 100000 1047192

In  experiment2  we  created  ten  trees  with 
alphabetSize 30  and  maxSizeWord 30.  We 
increased numTreeWord from 10,000 to 100,000. 
Table 3 shows the number of nodes in the trees.

The  average  number  of  visited  nodes  for 
experiment2 is shown in table 4.

Table 4. Experiment2 results

esr gsr esb gsb

tree1 1559 8907 12 477

tree2 2377 16583 8 720

tree3 2945 23765 3 923

tree4 3569 30940 9 1160

tree5 3915 37770 2 1283

tree6 4399 44552 2 1460

tree7 4788 50179 2 1615

tree8 5024 56546 2 1775

tree9 5475 64526 2 1852

tree10 5594 68661 2 1970

The esr, gsr and gsb operations visited more 
nodes in trees with more words, but the increase 
was minimal for esr and gsb operations. The gsr 
operation is much more affected by the increase 
in the number of words. On the other hand, the 
number  of  visited  nodes  for  the  esb  operation 
decreased when increasing the number of words. 
This is to be expected, since it is “easier” to find 

a  subset  of  a  given  word  in  a  tree  with  more 
words.

Table 5.  Percentage of visited nodes

esr gsr esb gsb

tree1 1.35% 7.69% 0.01% 0.41%

tree2 1.05% 7.34% 0.004% 0.32%

tree3 0.89% 7.17% 0.001% 0.28%

tree4 0.81% 7.06% 0.002% 0.26%

tree5 0.72% 6.97% 0.0004% 0.24%

tree6 0.68% 6.91% 0.0003% 0.23%

tree7 0.64% 6.72% 0.0003% 0.22%

tree8 0.59% 6.68% 0.0002% 0.21%

tree9 0.58% 6.82% 0.0002% 0.2%

tree10 0.53% 6.56% 0.0002% 0.19%

We also  ran  this  experiment  with  wordSize 
50. The number of visited nodes was higher for 
all  four  operations,  as  we  have  seen  in 
experiment1  already,  but  the  behavior  of  the 
operations was the same.

In table 5 we show the percentage of visited 
nodes in experiment2. In all four operations, the 
percentage  of  visited  nodes  slightly  decreased 
when increasing the number of words in the tree.

In  experiment3  we  created  five  trees  with 
maxSizeWord 50  and  numTreeWord 50,000. 
alphabetSize was  20,  40,  60,  80  and  100  for 
tree1, tree2,  tree3, tree4 and tree5 respectively. 
The number of nodes in the trees were: 869,373, 
1,011,369, 1,069,615, 1,102,827 and 1,118,492. 
Table  6  shows  the  average  number  of  visited 
nodes.

Table 6. Experiment3 results

esr gsr esb gsb

tree1 4244 108017 2 11605

tree2 8319 66373 35 2874

tree3 11241 52495 57 1289

tree4 12140 47930 46 789

tree5 13730 41533 39 547

When  increasing  alphabetSize,  the  tree 
becomes sparser – the array of child nodes in the 
nodes is larger,  but the number of nodes in all 
five trees is roughly the same. For gsr and more 
noticeably gsb operation, the average number of 



visited  nodes  decreased  when  alphabetSize 
increased.  The esr  operation on the other hand 
visited  more  nodes  in  trees  with  larger 
alphabetSize. The behavior of  the esb operation 
does not seem to be in relation with the value of 
alphabetSize.

Table 7.  Percentage of visited nodes

esr gsr esb gsb

tree1 0.49% 12.42% 0.0002% 1.33%

tree2 0.82% 6.56% 0.003% 0.28%

tree3 1.05% 4.91% 0.01% 0.12%

tree4 1.1% 4.35% 0.004% 0.07%

tree5 1.23% 3.71% 0.003% 0.05%

Table 7 shows the percentage of visited nodes 
in the tree for experiment3. Operations gsr and 
gsb visited a smaller percentage of the nodes in 
trees with a larger  alphabetSize, and for the esr 
operation the percentage increased.

4. Conclusions

We  presented  a  data  structure  and  its 
operations  created  for  solving  the  problem 
described in section 1.1. The data structure was 

tested in three  experiments  where we analyzed 
how the word size, the number of words in the 
tree, and the alphabet size affect the number of 
visited  nodes  of  the  operations.  In  all  three 
experiments  existsSubSet  was least  affected by 
the changes in the trees. The changes were most 
noticeable when changing the word size and the 
least when increasing the number of words in the 
tree.  The  most  affected  operations  were 
getAllSuperSet and getAllSubSet.
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