
Using Tries for Subset and Superset Queries

Stas Bevc, Iztok Savnik
Faculty of Mathematics, Natural Sciences and

Information Technologies, University of Primorska, Slovenia
stas.bevc@upr.si, iztok.savnik@famnit.upr.si

Abstract. This paper presents a data
structure for storing and querying sets. The
data structure is based on tries, but because
the order of elements in a set is not
important (unlike letters in a string) we are
able to implement additional subset and
superset query operations besides the trie's
insert and search operation. The operations
and their algorithms are described. We
empirically analyze the operations in a
series of experiments and present the results.

Keywords. Subset query, superset query, trie,
suffix tree, data structure.

1. Introduction

Let us begin with a formal definition of the
problem: let U be a set of ordered symbols, S a
set of subsets from U, and let X be a subset of U.
We are interested in the following queries:

1.is X a subset of any element from S?
2.is X a superset of any element from S?
3.enumerate all Y in S such that X is a
subset of Y

4.enumerate all Y in S such that X is a
superset of Y

The first two queries are a special case of the
third and fourth query.

Let us show an example of the first query. Let
U = {1, 2, 3, ..., 100} and S = {{2, 4, 5, 7, 15},
{9, 12, 25}, {3, 5, 6, 10, 11, 24}, {9, 12, 25,
38}}. If X = {3, 6, 11}, then X is a subset of {3,
5, 6, 10, 11, 24}.

The following is an example of the second
query. Let U = {1, 2, 3, ..., 100} and S = {{2, 4,
5, 7, 15}, {9, 12, 25}, {3, 5, 6, 10, 11, 24}, {9,
12, 25, 38}}. If X = {7, 9, 10, 12, 15, 25, 32},
then X is a superset of {9, 12, 25}.

A real-world scenario could be querying for
objects having certain properties. In this case U
would be a set of properties labeled with symbols
(e.g. a=wooden, b=red, ...), S would be a set of

objects having properties from U, and X would
be a subset of properties. To list objects from S
having all properties from X, we would run the
third query. To list objects from S having
properties only from X, we would run the fourth
query.

This paper presents a data structure named
SetTrie and its algorithms that solve the
described problem efficiently.

SetTrie is a tree data structure similar to the
well known trie tree. Like tries, its nodes contain
symbols and have pointers to child nodes. The
path from the root node to a marked node
represents a set (nodes containing the last symbol
of a set are marked). Unlike in tries where the
order of letters in a string is important, in SetTrie
we sort the symbols of a set before insertion. As
a consequence all nodes below any chosen node
contain symbols that are greater than the symbol
in the chosen node, and all nodes above it
contain symbols lesser than the symbol in the
chosen node. This property allows us to
implement subset and superset query operations.

The operations are tested in three experiments
where we analyze how the change of one
parameter affects the performance of the data
structure.

1.1 Related work

Our problem is somewhat similar to the
problem of searching substrings in strings (for
which Suffix trees can be used), but in our case
the order in which the symbols appear in do not
matter.

Baeza-Yates and Gonnet present an algorithm
in [1] for searching regular expressions using
Patricia trees as the logical model for the index.
They simulate a finite automata over a binary
Particia tree of words.

In [2] Charikar et. al. present two algorithms
to deal with a subset query problem. They extend
their results to a more general problem of
orthogonal range searching, and other problems.

Rivest [3] examines the problem of partial
matching with the use of hash functions and Trie
trees. He presents an algorithm for partial match
queries using Tries.

The initial implementation of SetTrie was in
the context of a datamining tool “fdep” where it
serves for storing and retrieving hypotheses in
the process of searching the theory of a relation
[4].

2. SetTrie data structure

SetTrie is a tree data structure composed of
nodes. Each node contains a symbol and an array
of child nodes. A node with a symbol k can have
children with symbols that are equal or greater
than k. The latter is the key property of the data
structure. SetTrie is not limited to sets, it works
with multisets as well. For this reason we will
call (multi)sets in the tree words: unlike a set, a
word may contain more than one occurrence of a
symbol. Nodes have a boolean flag to mark the
last symbol of a word.

Figure 1. Example of a SetTrie tree

In Fig.1 we show an example of SetTrie
containing words {1, 2, 3, 5}, {1, 2, 5}, {1, 2, 5,
6}, {4}, {4, 8, 9} and {11, 15, 22}. Nodes with a
dashed inner circle represent flagged nodes.

2.1 Implementation

Our data structure is implemented in Java
programming language. We will not describe
every detail of the implementation, but only what
is necessary to understand the operations
described in the next section.

It is composed of two classes: the Tree class
and the Node class. The Tree holds Nodes and
implements the following operations: insert,
search, existsSuperSet, getAllSuperSet,
existsSubSet and getAllSubSet. An empty tree is
composed of the root node only. Root node
contains an empty set ({}).

The Node class has four attributes: the
symbol of the node, the array of child nodes, a
boolean flag to mark the last symbol of a word,
and an integer for counting the number of
children of a node. Symbols of the words must
be integers (or converted to integers otherwise).

2.2 Operations

This section describes six operations and its
algorithms we have implemented for our data
structure. All operations are recursive. The insert
and search operations work as in ordinary Tries.

Insert operation inserts a given word into the
tree. Alg. 1 shows the operation algorithm in
pseudocode.

1. insert(node, set, positionInSet)
2. if positionInSet < set.length then
3. if there is no node in child_array at element
 then
4. create new_node with element and put it in
 child_array at element
5. increase num_child in node
6. if element is last in set then
7. set the new_node's last_flag to true
8. else
9. insert(child_array at element, set,
 positionInSet+1)

Algorithm 1. The insert operation

The initial value of node is root, and
positionInSet is 0. set represents the word being
inserted and element is a symbol of the word.
positionInSet marks which symbol from the word
is currently selected. In line 4 a symbol is stored
in the array at position element (ex. symbol 5 is
stored at position 5). num_child is the counter for
child nodes of a node. It is increased every time a
node is created.

Search operation searches for a given word in
the tree. It returns true if it finds all symbols of
the word (i.e. the word is in the tree), and false as
soon one symbol is not found (i.e. the word is not
in the tree). The algorithm is shown in Alg. 2.

1. search(node, set, positionInSet)
2. if positionInSet < set.length then
3. if there is no node in child_array at element
 then
4. set is not in the tree, return false
5. else
6. if element is last in set then
7. if node's last_flag true then
8. set is in the tree, return true
9. else
10. set is not in the tree, return false
11. else
12. search(child_array at element, set,
 positionInSet+1)

Algorithm 2. The search operation

The initial value of node is root, and
positionInSet is 0. set is the word being searched
for. In line 6 the if-statement is true if the
selected symbol is the last symbol of the given
word. In line 7 the if-statement is true, if the
node contains a last symbol of a word.

ExistsSuperSet operation checks if there
exists a superset in the tree of the given word. It
returns true if a superset is found, otherwise it
returns false. Alg. 3 represents the algorithm of
the operation.

1. existsSuperSet(node, set, positionInSet, offset)
2. if not found then
3. if found node with the last element then
4. found = true
5. else
6. for (offset; node with possible child exists
 and not found; offset++)
7. if found node with not last element then
8. existsSuperSet(node.child, set,
 positionInSet+1, offset)
9. else if element not found but possible child
 with element exists then
10. existsSuperSet(node.child, set,
 positionInSet, offset)
11. return found

Algorithm 3. The existsSuperSet operation

The initial value of node is root, found is
false, and positionInSet is 0. set is the given
word, and offset is the offset in the array of child
nodes. In line 3 the if-statement is true if the last
symbol of the given word is found in a node. In
line 6, the for-loop continues looping if a node

with possible child exists. Here the operation
takes advantage of the SetTrie properties. The
array of child nodes is ordered, and child nodes
cannot contain smaller symbols than the parent
node. Also the child node counter is considered
here. If all these criteria are met, the for-loop
continues looping, otherwise false is returned.

GetAllSuperSet operation returns all existing
supersets in the tree of the given word. It works
similarly to the existsSuperSet operation, but it
does not stop when finding the first superset.
Instead it lists all the words contained in the
nodes below such a node. Alg. 4 represents the
algorithm of the operation.

1. getAllSuperSet(node, set, positionInSet,
 offset)
2. if found node with last element then
3. print all sets below this node
4. else
5. for (offset; node with possible child exists;
 offset++)
6. if found node with not last element then
7. getAllSuperSet(node.child, set,
 positionInSet+1, offset)
8. else if element not found but node with
 possible child exists then
9. getAllSuperSet(node.child, set,
 positionInSet, offset)

Algorithm 4. The getAllSuperSet operation

The initial value of node is root,
positionInSet is 0, and set is the given word.
There is a key difference between this algorithm
and the algorithm of the existsSuperSet
operation: the for-loop in line 5 does not have a
found check, so the print command in line 3, can
be reached at different parts of the tree.

ExistsSubSet operation checks if there exists
a subset in the tree of the given word. It returns
true if a subset is found, otherwise it returns
false. Alg. 5 represents the algorithm of the
operation.

1. existsSubSet(node, set, positionInSet)
2. if not found then
3. if node with element found then
4. if node's last_flag true then
5. found = true
6. else if element not last then
7. existsSubSet(node.child, set,
 positionInSet+1)

8. increase positionInSet until next element
 different from current element
9. existssubset(node, set, positionInSet)
10. return found

Algorithm 5. The existsSubSet operation

The initial value of node is root, found is
false, positionInSet is 0, and set is the given
word. In line 4, the if-statement is true if a word
in the tree ends in that node. In line 8 the
algorithm takes the next symbol from the word if
it is the same as the currently selected symbol.

GetAllSubSet operation returns all existing
subsets in the tree of the given word. It works
similarly to the existsSubSet operation, but it
does not stop when finding the first subset. It
stops when there are no more symbols to take
from the given word. The algorithm is shown in
Alg. 6.

1. getAllSubSet(node, set, positionInSet)
2. if found node with element then
3. if node's last_flag true then
4. print subset
5. if element not last then
6. getAllSubSet(node.child, set,
 positionInSet+1)
7. increase positionInSet until next element
 different from current element
8. getAllSubSet(node, set, positionInSet)

Algorithm 6. The getAllSubSet operation

The initial value of node is root,
positionInSet is 0, and set is the given word.
Line 4 prints the found subset of the given word.

3. Experiments

With our experiments we observe how the
average number of visited nodes for
existsSuperSet, getAllSuperSet, existsSubSet and
getAllSubSet operations change, while changing
one of the following three parameters: the
number of words in the tree, the alphabet size
(how many different symbols there are), and the
maximum word length. We mark these
parameters as numTreeWord, alphabetSize and
maxSizeWord. The minimum word length was
set to 2. The operation names are abbreviated as
esr (existsSuperSet), gsr (getAllSuperSet), esb
(existsSubSet) and gsb (getAllSubSet). For each
of the three experiments the words in the tree and

in the test set were randomly generated. Test set
had 5000 words and were generated with the
same parameters as the words in the tree. The
words from the test set were used as inputs for
the operations. The averages presented in this
section were obtained by summing up the
number of visited nodes for each word from the
test set, and dividing it by the number of the
words in the test set.

In experiment1 we created four trees with
alphabetSize 30 and numTreeWord 50,000.
maxSizeWord was 20, 40, 60 and 80 for tree1,
tree2, tree3 and tree4 respectively. The number
of nodes in the trees were: 332,182, 753,074,
1,180,922 and 1,604,698. We calculated the
average number of visited nodes for each word
length separately, but in table 1 (due to space
constraints) we present the sum of these
averages.

When we increased maxSizeWord, the
average number of visited increased for esr, gsr
and gsb operations. We repeated the experiment
multiple times and the esb operation was
generally between 2 and 10, but sometimes also
visiting up to 1000 nodes for any tree. This
seems to be dependent on what words were
randomly generated. Because the words were
randomly generated between 2 and
maxSizeWord, gsr and gsb found more results
when the tree contained words of a greater size.

Table 1. Experiment1 results

esr gsr esb gsb

tree1 2830 21755 2 427

tree2 5318 57958 45 2833

tree3 7130 106177 2 8530

tree4 9497 175105 8 17903

Table 2. Percentage of visited nodes

esr gsr esb gsb

tree1 0.85% 6.55% 0.001% 0.13%

tree2 0.71% 7.7% 0.01% 0.38%

tree3 0.6% 8.99% 0.0002% 0.72%

tree4 0.59% 10.91% 0.001% 1.12%

Table 2 shows the percentage of visited nodes
in experiment1. For the esr operation the
percentage of visited nodes decreases when the

word length increases, and for gsr and gsb it
increases.

Table 3. Number of nodes in trees

numTreeWord nodes

tree1 10000 115780

tree2 20000 225820

tree3 30000 331626

tree4 40000 437966

tree5 50000 541601

tree6 60000 644585

tree7 70000 746801

tree8 80000 846388

tree9 90000 946493

tree10 100000 1047192

In experiment2 we created ten trees with
alphabetSize 30 and maxSizeWord 30. We
increased numTreeWord from 10,000 to 100,000.
Table 3 shows the number of nodes in the trees.

The average number of visited nodes for
experiment2 is shown in table 4.

Table 4. Experiment2 results

esr gsr esb gsb

tree1 1559 8907 12 477

tree2 2377 16583 8 720

tree3 2945 23765 3 923

tree4 3569 30940 9 1160

tree5 3915 37770 2 1283

tree6 4399 44552 2 1460

tree7 4788 50179 2 1615

tree8 5024 56546 2 1775

tree9 5475 64526 2 1852

tree10 5594 68661 2 1970

The esr, gsr and gsb operations visited more
nodes in trees with more words, but the increase
was minimal for esr and gsb operations. The gsr
operation is much more affected by the increase
in the number of words. On the other hand, the
number of visited nodes for the esb operation
decreased when increasing the number of words.
This is to be expected, since it is “easier” to find

a subset of a given word in a tree with more
words.

Table 5. Percentage of visited nodes

esr gsr esb gsb

tree1 1.35% 7.69% 0.01% 0.41%

tree2 1.05% 7.34% 0.004% 0.32%

tree3 0.89% 7.17% 0.001% 0.28%

tree4 0.81% 7.06% 0.002% 0.26%

tree5 0.72% 6.97% 0.0004% 0.24%

tree6 0.68% 6.91% 0.0003% 0.23%

tree7 0.64% 6.72% 0.0003% 0.22%

tree8 0.59% 6.68% 0.0002% 0.21%

tree9 0.58% 6.82% 0.0002% 0.2%

tree10 0.53% 6.56% 0.0002% 0.19%

We also ran this experiment with wordSize
50. The number of visited nodes was higher for
all four operations, as we have seen in
experiment1 already, but the behavior of the
operations was the same.

In table 5 we show the percentage of visited
nodes in experiment2. In all four operations, the
percentage of visited nodes slightly decreased
when increasing the number of words in the tree.

In experiment3 we created five trees with
maxSizeWord 50 and numTreeWord 50,000.
alphabetSize was 20, 40, 60, 80 and 100 for
tree1, tree2, tree3, tree4 and tree5 respectively.
The number of nodes in the trees were: 869,373,
1,011,369, 1,069,615, 1,102,827 and 1,118,492.
Table 6 shows the average number of visited
nodes.

Table 6. Experiment3 results

esr gsr esb gsb

tree1 4244 108017 2 11605

tree2 8319 66373 35 2874

tree3 11241 52495 57 1289

tree4 12140 47930 46 789

tree5 13730 41533 39 547

When increasing alphabetSize, the tree
becomes sparser – the array of child nodes in the
nodes is larger, but the number of nodes in all
five trees is roughly the same. For gsr and more
noticeably gsb operation, the average number of

visited nodes decreased when alphabetSize
increased. The esr operation on the other hand
visited more nodes in trees with larger
alphabetSize. The behavior of the esb operation
does not seem to be in relation with the value of
alphabetSize.

Table 7. Percentage of visited nodes

esr gsr esb gsb

tree1 0.49% 12.42% 0.0002% 1.33%

tree2 0.82% 6.56% 0.003% 0.28%

tree3 1.05% 4.91% 0.01% 0.12%

tree4 1.1% 4.35% 0.004% 0.07%

tree5 1.23% 3.71% 0.003% 0.05%

Table 7 shows the percentage of visited nodes
in the tree for experiment3. Operations gsr and
gsb visited a smaller percentage of the nodes in
trees with a larger alphabetSize, and for the esr
operation the percentage increased.

4. Conclusions

We presented a data structure and its
operations created for solving the problem
described in section 1.1. The data structure was

tested in three experiments where we analyzed
how the word size, the number of words in the
tree, and the alphabet size affect the number of
visited nodes of the operations. In all three
experiments existsSubSet was least affected by
the changes in the trees. The changes were most
noticeable when changing the word size and the
least when increasing the number of words in the
tree. The most affected operations were
getAllSuperSet and getAllSubSet.

5. References

[1] Baeza-Yates R, Gonnet G, Fast text
searching for regular expressions or
automation searching on tries. Journal of
ACM 1996; 43(6): 915-936.

[2] Charikar M, Indyk P, Panigrahy R. New
Algorithms for Subset Query, Partial Match,
Orthogonal Range Searching and Related
Problems. Lecture Notes In Computer
Science 2002; Vol 2380, p. 451-462.

[3] Rivest R, Partial-Match Retrieval
Algorithms. SIAM Journal on Computing
1976; 5(1)

[4] Savnik I, Flach P A, Bottom-up Induction of
Functional Dependencies from Relations.
Proc. of KDD'93 Workshop: Knowledge
Discovery from Databases, AAAI Press,
1993, Washington, p. 174-185.

