Efficient subset and superset queries

Iztok SAVNIK

Faculty of Mathematics, Natural Sciences and Informatiechhologies, University of
Primorska, Glagoljaska 8, 5000 Koper, Slovenia

Abstract. The paper presents index structure for storing and queets called
SetTrie. Besides the operatioria sert andsearch defined for ordinary tries, we
introduce the operations for retrieving subsets and seferf a given set from
SetTrie tree. The performance of operations is analysed empirically $eries
of experiments. The analysis shows that sets can be acces$¥d |set|) time
where|set| represents the size of parameter set. The consianip to5 for subset
case and approximatehp0 in average case for the superset case.

Keywords. Containment queries, Indexes, Access methods, Databases

1. Introduction

Set containment queriese common in applications based on object-oriented orctbje
relational database systems. Relational tables or objexts collections can haveet-
valued attributes.e. the attributes that range over sets. Set containmeartegucan ex-
press either selection or join operation based on set con@it condition [5,10,3].

In this paper we propose an index structweTrie that implements efficiently
the basic two types of set containment queries: subset goerset queries. We give
the presentation of the proposed data structure, the dpesadefined orbetTrie and
thorough empirical analysis.

Let us first give a description of subset and superset opeain more detail. Let/
be a set of ordered symbols. The subsefs afe denoted asords Given a set of words
S and a subset df namedX, we are interested in the following queries.

1. Is X a subset of any element fro§%?

2. Is X a superset of any element fro$t?

3. Enumerate alY" in S such thatX is a subset ot".
4. Enumerate alY” in S such thatX is a superset of .

SetTrie is a tree data structure similar toie [6]. The possibility to extend the
performance of usudtie from membership operation to subset and superset opesation
comes from the fact that we are storiegtsand not thesequencesf symbols as for
ordinary tries. In the case of sets the ordering of symboéssdat is not important as it is
in the case of text. As it will be presented in the paper thewng of set elements can
be exploited for the efficient implementation of containtngperations.

We analyse subset and superset operations in two types efiexnts. Firstly, we
examine the execution of the operations on real-world déarevsets represents words
from the English dictionary. Secondly, we have tested treratpons on artificially gen-

{
1/\2
VN
pufe
OB OO

erated data. In these experiments we tried to see how threepasmeters: the size
of words, the size oSetTrie tree and the size of test-set, affect the behavior of the
operations.

The paper is organized as follows. The following sectiorspnés the data structure
SetTrie together with the operations for searching the subsets @persets in a tree.
The Section 3 describes the empirical studysetT'rie. We present a series of experi-
ments that measure the behavior of operations and the sdagattructure. The related
work is presented in Section 4. We give the presentation istent work on set-valued
attributes and containment queries as well as related wotki® and Patricia tree data
structures. Finally, the overview and conclusions arergineSection 5.

2. Data structure SetT'rie

SetTrie is a tree composed of nodes labeled with indices fiolm N whereN is the
size of the alphabet. The root node is labeled Wittand its children can be the nodes
labeled from1 to N. A root node alone represents an empty set. A node labetad
have children labeled with numbers greater thalBach node can have a flag denoting
the last element in the set. Therefore, a set is represeptagath from the root node to
a node with flag set to true.

Let us give an example dfetTrie. Figure 2 presents 8etTrie containing the
sets{1,3},{1,3,5}, {1,4},{1,2,4}, {2,4},{2,3,5}. Note that flaged nodes are repre-
sented with circles.

Since we are dealing with sets for which the ordering of tleeneints is not impor-
tant, we can define a syntactical order of symbols by asgjgeath symbol a unique
index. Words are ordered by sequences of indices. The aglefiwords is exploited for
therepresentatiorof sets of words as well as in theplementatiorof the above stated
operations.

SetTrie is a tree storing a set of words which are represented by affaththe
root of SetT'rie to a node corresponding to the indices of elements from wévslsvith
tries, prefixes that overlap are represented by a commorfraatithe root to an internal
vertex of SetTrie tree.

The operations for searching subsets and supersets ofaisef use the ordering
of U. The algorithms do not need to consider the tree branchegtich we know they
do not lead to results on the basis of the ordering of word sysafhe search space for

a givenX and tree representing can be seen as a subtree determined primarily by the
search wordX but also with the search tree corresponding'to

2.1. Operations

Let us first present a data structure for stonwvgyds that is, the sets of symbols. Words
are stored in a data structuiiéord representing ordered sets of integer numbers.

The users ofWord can scan sets using the following mechanism. The operation
word.gotoFirst Element sets the current element of word to the first element of odtlere
set. Then, the operatianord.existsCurrent Element checks if word has the current
element set. The operatiarvrd.current Element returns the current element, and the
operationword.gotoN ext Element goes to the next element in the set.

Let us now describe the operations of the data structigtd'rie. The first opera-
tion is insertion. The operatioimsert(rootword) enters a newvord into the SetTrie
referenced by the rooetode. The operation is presented by Algorithm 1.

Algorithm 1 insertqode, word)
1: if (word.existsCurrentElementhen
2. if (exists child ofnode labeledword.currentElement)hen

3: nextN ode = child of node labeledword.currentElement;
4: dse
5: nextNode = create child ofiode labeledword.currentElement;
6: endif
7. insertquext N ode, word.gotoNextElement)
8: else
9: node's flag_last =true;
10: end if

Each invocation of operatiomsert either traverses through the existing tree nodes
or creates new nodes to construct a path from the root to thgethnode corresponding
to the last element of the ordered set.

The following operatiorsearch(nodeword) searches for a giveword in the tree
node. It returns true when it finds all symbols from the word, antddaas soon one
symbol is not found. The algorithm is shown in Algorithm 2triverses the treeode
by using the elements of ordered setrd to select the children.

Let us give a few comments to present the algorithm in moraild@te operation
have to be invoked with the calkarch(rootset.gotoFirstElementso thatroot is the
root of theSetT'rie tree and the current element of therd is the first element ofvord.
Each activation ofsearch tries to match the current element @brd with the child
of node. If the match is not successful it returiislse otherwise it proceeds with the
following element ofword.

The operatiorezistsSubset(nodeword) checks if there exists a subset ©brd
in the given tree referenced pde. The subset that we search in the tree has fewer
elements thaword. Therefore, besides that we search for the exact match walsan
skip one or more elementsinord and find a subset that matches the rest of the elements
of word. The operation is presented in Algorithm 3.

Algorithm 2 searchode, word)
1: if (word.existsCurrentElementhen
2. if (there exists child ofiode labeledword.currentElement)hen
matchNode = child vertex ofode labeledword.currentElement;
searchfnatch N ode, word.gotoNextElement);
else
return false
end if
else
9: return (node’s last_flag==true) ;
10: end if

© No gk w

Algorithm 3 existsSubset(node,set)
1: if (node.last_flag== true) then
return true
end if
. if (notword.existsCurrentElementhen
return false
end if
: found = false;
. if (node has child labeledvord.currentElement)hen
nextNode = child of node labeledword.currentElement;
found = existsSubsetlcxt N ode, word.gotoNextElement);
:end if
- if (ffound) then
return existsSubsetode,word.gotoNextElement);
else
return true
:end if

© XN R WD

e e o
QO WNRO

Algorithm 3 tries to match elements aford by descending simultaneously in tree
and inword. The first IF statement (line 1) checks if a subsetwofd is found in the
tree i.e. the current node of a tree is the last element ofesulbke second IF statement
(line 4) checks ifword has run of the elements. The third IF statement (line 8) esxifi
if the parallel descend iword and tree is possible. In the positive case, the algorithm
callsexistsSubset with the next element aford and a child ofrode corresponding to
matched symbol. Finally, if match did not succeed, currésrnent ofword is skipped
andexistsSubset is activated again in line 13.

The operatiorexistsSubset can be easily extended to find all subsets of a given
word in atreenode. After finding the subset in line 15 the subset is stored aaddarch
continues in the same manner as before. The experimentdtsr@gth the operation
getAllSubsets(nodword) are presented in the following section.

The operatiorzistsSuperset(nodeword) checks if there exists a superset@frd
in the tree referenced byode. While in operationexistsSubset we could skip some
elements fromvord, here we can do the opposite: the algorithm can skip someesism

Algorithm 4 existsSupersetpde, word)
1: if (notword.existsCurrentElementhen
2. return true;
3: end if
4; found = false;
5. from = word.currentElement;
6
7
8
9

. upto =word.nextElement if it exists and N otherwise;
: for (eachchild of node labeledl: from < I < upto) while! found do
if (child is labeledupto) then
found = existsSuperset(ild,word.gotoNextElement);

10. €se

11: found = existsSupersef{ild,word);
12: endif

13: end for

in supersets represented hyde. Thereforeword can be matched with the subset of
superset from &ree. The operation is presented in Algorithm 4

Let us present Algorithm 4 in more detail. The first IF statatrehecks if we are
already at the end abord. If so, then the parameterord is covered completely with a
superset fromree. Lines 5-6 set the lower and upper bounds of iteration. I geess
we either skip currenthild and callexistsSuperset on unchangedord (line 11), or,
descend in parallel on bothord and tree in the case that we reach the upper bound ie.
the next element imord (line 9).

Again, the operatiorzistsSuperset can be quite easily extended to retrieve all
supersets of a givemord in a treenode. However, aftervord (parameter) is matched
completely (line 2 in Algorithm 4), there remains a subtréwailers corresponding to a
set of supersets that subsumerd. This subtree is rooted in a tree node, let saye;,,
that corresponds to the last elementwadrd. Therefore, after thevodey, is matched
against the last element of the set in line 2, the completeresainas to be traversed to
find all supersets that go througlade.

3. Experiments

The performance of the presented operations is analysediirekperiments. The main
parameters of experiments are: the humber of words in tlee tihe size of the alpha-
bet, and the maximum length of words. The parameters are diamenlreeW ord,
alphabetSize, andmaxSizeW ord, respectively. In every experiment we measure the
number of visited nodes necessary for an operation to textain

In the first experimentSetT'rie is used to store real-world data — it stores the words
from English Dictionary. In the following three experimenive use artificial data —
datasets and test data are randomly generated. In thesénsaapes we analyse in de-
tail the interrelations between one of the stated tree patension the number of visited
nodes.

In all experiments we observe four operations presentechén previous sec-
tion: existsSubset (abbr. esb) and its extensioryetAllSubsets (abbr. gsb), and
existsSuperset (abbr.esr) and its extensioget All Supersets (abbr.gsr).

word length esr gsr| esb| gsb
2 523 | 169694 1 1
3 3355| 103844| 3 3
4 12444 | 64802 6 6
5 9390 | 34595| 11 12
6 11500| 22322 14 19
7 12148| 17003| 18 32
8 8791 | 10405| 19 46
9 6985 7559 | 19 78
10 3817 3938 | 21| 102
11 3179 3201 | 20| 159
12 2808 2820| 20| 221
13 2246 2246 | 22| 290
14 1651 1654 | 19| 403
15 1488 1488 | 18| 575
16 895 895| 19| 778
17 908 908 | 20| 925
18 785 785 | 18| 1137
19 489 489 | 22| 1519
20 522 522 | 19| 1758
21 474 474 | 19| 2393
22 399 399 | 17| 3044
23 362 362 | 17| 3592
24 327 327 | 19| 4167

Figure 2. Visited nodes for dictionary words

3.1. Experiment with real-world data

Let us now present the first experiment in more detail. Thebamof words in test set
is 224,712 which results in a tree with 570,462 nodes. Thgtleaf words are between
5 and 24 and the size of the alphabéiplabetSize) is 25. The test set contains 10,000
words.

Results are presented in Table 1 and Figure 2. Since thed®d@0 words and 23
different word lengths in the test set, approximately 43autnwords are of the same
length. Table 1 and Figure 2 present the average numberitdd/isodes for each input
word length (except fogsr where values below word length 6 are intentionally cut off).

Let us give some comments on the results presented in TablesRof all, we can
see that the superset operationsr(and gsr) visit more nodes than subset operations
(esb andgsb).

The number of nodes visited ygr and gsr decreases as the length of words in-
creases. This can be explained by more constrained seatich gase of longer words,
while it is very easy to find supersets of shorter words andhé&more, there are a lot
of supersets of shorter words in the tree.

Since operatiogsr returns all supersets (of a given set), it always visits nmoes
than the operatiomsr. However, searching for the supersets of longer words dalmos

Dictonary words
25000 T T

20000

15000

Visited nodes

10000

5000

0 5 10 15 20 25
Word length

Figure 3. Number of visited nodes

always results in failure and for this reason the number sifed nodes is the same for
both operations.

The number of visited nodes fesb in the case that words have more than 5 symbols
is very similar to the length of words. Below this length ofnds bothesb andgsb visit
the same number of nodes, because there were no subset Wirdslength in the tree
and both operations visit the same nodes.

The number of visited nodes fggb linearly increases as the word length increases.
We have to visit all the nodes that are actually used for thesgentation of all subsets
of a given parameter set.

3.2. Experiments with artificial data

In experimentl we observe the influence of changing the maximal length ofivior
the performance of all four operations. We created fouistveiéh alphabetSize 30 and
numTreeWord 50,000.maxzSizeWord is different in each tree: 20, 40, 60 and 80,
for treel, tree2, tree3 and tree4, respectively. The leafyttord in each tree is evenly
distributed between the minimal and maximal word size. Thmlper of nodes in the
trees are: 332,182, 753,074, 1,180,922 and 1,604,698e$hsdt contains 10,000 words.

Figure 3 shows the performance of all four operations oncait frees. The perfor-
mance of superset operations is affected more by the chditge word length than the
subset operations.

With an even distribution of data in all four treessr visits most nodes for in-
put word lengths that are about half of the sizenafxSizeWord (as opposed to dic-
tionary data where it visits most nodes for word lengths axipnately one fifth of
maxSizeW ord). For word lengths equal taax SizeW ord the number of visited nodes
is roughly the same for all trees, but that number increalgistly as the word length
increases.

esb operation visits fewer than 10 nodes most of the time, butife¢3 it goes up
to 44 which is still a very low number. The experiment was ed¢pd multiple (about
10) times, and in every run the operation "jumped up" in aedéht tree. As seen later
in experiment2, it seems thahumTreeWord 50 is just on the edge of the value

esr gsr
35000 1.4e+06 .

— treel
— tree2 ||
— tree3 | |
— treed

800000 1

30000 1.2¢+06

25000 Le+06

20000

15000 600000 1

Visited nodes
Visited nodes

10000 400000 1

5000 200000 1

O 1 1 1 1 1 0 \A\ L
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Word length Word length
esb gsb
45 T T T T T T T 80000 T T T T
40 70000 || — treel
— tree2

35

60000 [| — tree3
30 — treed

)
S

[3
(=]
T
Visited nodes

2 B o
(=] (=] j=)
(=] (=] j=]
(=] (=] j=]
(=] (=] (=]

Visited nodes

20000

10000

| | |) \ \ . . . \ \ \ \
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
Word length Word length

Figure4. Experiment 1 - increasingraxSizeW ord

whereesb stays constantly below 10 visited nodes. It is safe to salytigchange in
maxSizeW ord has no major effect oaristsSubSet operation.

In contrast tagsr, gsb visits less nodes for the same input word length in trees with
greatermaxSizeW ord, but the change is minimal. For example for word length 35 in
tree2 (maxSizeW ord 40) gsb visits 7,606 nodes, itree3 (maxSizeW ord 60) it visits
5,300 nodes and itree4 (maxSizeW ord 80) it visits 4,126 nodes.

In experiment2 we are interested about how a change in the number of words
in the tree affects the operations. Ten trees are createithllalphabetSize 30 and
maxSizeWord 30. numTreeWord is increased in each tree by 10,000 wortgel
has 10,000 words, andee10 has 100,000 words. The number of nodes in the trees (from
treel to treel0) are: 115,780, 225,820, 331,626, 437,966, 541,601, 684.58,801,
846,388, 946,493 and 1,047,192. The test set contains %0aQ.

Figure 4 shows the number of visited nodes for each operatidour treestreel,
treed, tree7 andtreel0 (only every third tree is shown to reduce clutter). When iasre
ing numTreeW ord the number of visited nodes increasesdsr, gsr andgsb opera-
tions. esb is least affected by the increased number of words in the neeontrast to
the other three operations, the number of visited node®dees whenumTreeW ord
increases.

For input word lengths around half the valuewfx SizeW ord (between 13 and 17)
the number of visited nodes fegsr increases with the increase of the number of words

esr gsr
.

16000 T T T T T 600000
14000 - — treel
500000 - — treed
12000 — tree?
P ¢ 400000 - — treel0 |
8 10000 3
=] c
= S
= 8000 = 300000 -
L 2
26000 S
> 2200000
4000
100000
2000
0 0 I
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Word length Word length
esb asb
40 T T T 9000 T T T
35 8000 || — treel
— treed
30 T000 P —— tree7
2 15 % 6000 || —— treel0
g % 9
g € 5000 |
= 20 o
B 2 4000
L5 b L
> > 3000
10| 2000 |
St 1000
0 0 . — . .
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Word length Word length

Figure5. Experiment 2 - increasingumTreeW ord

in the tree. For input word lengths up to 10, the differencevben trees is minimal.
After word lengths about 20 the difference in the number sitgd nodes between trees
starts to decline. Also, trees 7 to 10 have very similar teslilseems that after a certain
number of words in the tree the operation "calms down".

The increased number of words in the tree affectgtheperation mostly in the first
quarter ofmaxSizeW ord. The longer the input word, the lesser the difference betwee
trees. Still, this operation is the most affected by the geaof numTreeW ord. The
average number of visited nodes for all input word lengthsdal is 8,907 and in tree10
itis 68,661. Due to the nature of the operation, this behasiexpected. The more words
there are in the tree, the more supersets can be found fopatvirrd.

As already noted above, when the number of words in the teases the number
of visited nodes foesb decreases. After a certain number of words, in our case s w
around 50,000, the operation terminates at a minimum pleseiits of nodes for any
word length. The increase afumTreeW ord seems to "push down" the operation from
left to right. This can be seen in figure 4 by comparingel andtreed. In treel the
operation visits more then 10 after word length 15, anédrire4 it visits more than 10
nodes after word length 23. Overall the number of visitedasad always very low.

The chart ofysb operation looks like a mirrored chart g§r. The increased number
of words in the tree has more effect on input word lengths wtiee operation visits
more nodes (longer words). Below word length 15 the diffeegbetween trees is in the

range of 100 visited nodes. At word length @ visits 1,729 nodes itreel and 8,150
nodes intreel0. The explanation in for the increased number of visited saglsimilar
as forgsr operation: the longer the word, the more subsets it can llagenore words
in the tree, the more words with possible subsets there are.

esr gsr
70000 ———— T 700000 T

— treel
— tree2
— tree3
— tree4

treeS

— treel
— tree2 |

50000 |- tree3 | | 500000 |

— tree4
L treeS |
- I \
20000
10000 /
o L i .
10

\
N
e 1 100000
////r)‘%m/
PN e 0
20

L L L Fi—— = -
25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

60000 600000

400000

) B
=3 =)
= =]
= =]
S S

= 300000

sited nodes

1

Visited nodes

200000

0 5 15
Word length Word length
esb gsb
250 T T T T T T T T 60000 T T T T T T T T
treel
200 H T tree2 50000 |
— tree3
% —— tree4 % 40000
2 150 tree5 2
£ £
= < 30000
] 8
Z 100 \Z z
> p > 20000 -
A V
50 | i E
M 10000
AN
0 /):_A_///- —t T~ P et S | 1 0 . - 1 1
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Word length Word length

Figure 6. Experiment 3 - increasinglphabetSize

In experiment3 we are interested about how a change in the alphabet size af-
fects the operations. Five trees are created witty SizeW ord 50 andnumTreeW ord
50,000.alphabetSize is 20, 40, 60, 80 and 100, fareel, tree2, tree3, tree4 and
treeb, respectively. The number of nodes in the trees are: 86913081,369, 1,069,615,
1,102,827 and 1,118,492. The test set contains 5,000 words.

When increasingl/phabet Size the tree becomes sparser—the number of child nodes
of a node is larger, but the number of nodes in all five treesughly the same. For
gsr and more notably;sb operation, visit less nodes for the same input word length:
the average number of visited nodes decreased whembet Size increases. Thesr
operation on the other hand visits more nodes in trees wigieialphabetSize.

The number of visited nodes e&r increases with the increase @fphabetSize.

This is because it is harder to find supersets of given wortienwhe number of sym-
bols that make up words is larger. The effect is greater ordvengths below half
maxSizeWord. The number of visited nodes starts decreasing rapidly aftertain

word length. At this point the operation does not find any ssgts and it returns false.

gsr is not affected much by the changeadphabet Size. The greatest change hap-
pens when increasingphabetSize over 20 {reel). The number of visited nodes in
trees 2 to 5 is almost the same, but it does decrease with iemgease ofilphabet Size.

In treel esb visits on average 3 nodes. When we incredpéabetSize the number
of visited nodes also increases, but agdn the difference between trees 2 to 5 is small.
The change ofilphabetSize has a greater effect on longer input words for §he
operation. The number of visited nodes decreased wheiubet Size increased. Here
again the biggest change is when going aMe@habet Size 20. With every next increase,

the difference in the number of visited nodes is smaller.

4, Related work

The initial implementation ofSetTrie was in the context of a datamining togtiep
which is used for the induction of functional dependenciesfrelations [8,9]SetTrie
serves there for storing and retrieving hypotheses thatddscorrespond tsets

The data structure we propose is similar to trie [6,7]. Siweeare not storing se-
quences busetswe can exploit the fact that the order in sets is not importahere-
fore, we can take advantage of this to use syntactical ofd#ements of sets and obtain
additional functionality of tries.

Sets are among important data modeling constructs in elgéational and object-
oriented database systeret-valued attributeare used for the representation of prop-
erties that range over sets of atomic values or objects.Haaeacommunity has shown
significant interest in indexing structures that can be wsedccess paths for querying
set-valued attributes [10,5,3,11,12].

Set containment queriesere studied in the frame of different index structures.
Helmer and Moercotte investigated four index structuresgigerying set-valued at-
tributes of low cardinality [3]. All four index structureseabased on conventional tech-
nigues: signatures and inverted files. Index structurepened are: sequential signature
files, signature trees, extendable signature hashing, aneeBrased implementation of
inverted lists. Inverted file index showed best performames other data structures in
most operations.

Zhang et al. [12] investigated two alternatives for the iempéntation of containment
gueries: a) separate IR engine based on inverted lists andtive tables of RDBMS.
They have shown that while RDBMS are poorly suited for comteént queries they
can outperform inverted list engine in some conditionsttt@mmore, they have shown
that with some modifications RDBMS can support containmeetigs much more effi-
ciently.

Another approach to the efficient implementation of set @immbhent queries is the
use of signature-based structures. Tousidou et al. [11bgwmthe advantages of two ac-
cess paths: linear hashing and tree-structured methodg.stow through the empirical
analysis that S-tree with linear hash partitioning is edfitidata structure for subset and
superset queries.

From the other perspective, our problem is similar to seéagcbubstrings in strings
for which tries and Suffix treesan be used. Firstly, Rivest examines [6] the problem of
partial matching with the use of hash functions ani trees. He presents an algorithm
for partial match queries usingies. However, he does not exploit the ordering of indices
that can only be done in the case thatsare stored in tries.

Baeza-Yates and Gonnet present an algorithm [1] for seagaleigular expressions
using Patricia trees as the logical model for the index. They simulate agfiaitomata
over a binary Particia tree of words. The result of a regutpression query is a superset
or subset of the search parameter.

Finally, Charikar et. al. [2] present two algorithms to deéth a subset query prob-
lem. The purpose of their algorithms is similardeistsSuperSet operation. They ex-
tend their results to a more general problem of orthogonajeasearching, and other
problems. They propose a solution for “containment queoplam” which is similar to
our 2. query problem introduced in Section 1.

5. Conclusions

The paper presents a data structSeg¢T'riec that can be used for efficient storage and
retrieval of subsets or supersets of a givend. The performance ofetTrie is shown
to be efficient enough for manipulating sets of sets in pcattpplications.

Enumeration of subsets of a given universall$ét very common iimachine learn-
ing [4] algorithms that search hypotheses space ordered inieelaDften we have to
see if a given set, a subset or a superset has already beederedshy the algorithm.
Such problems include discovery of association rules,tfanal dependencies as well
as some forms of propositional logic.

Finally, the initial experiments have been done to invedégf SetTrie can be
employed for searching substrings and superstrings is.t€tr this purpose the data
structureSetT'rie has to be augmented with the references to the position alsior
text. While the data structure is relatively large “indextret may still be useful because
of the efficient search.

References

[1] Baeza-Yates, R., Gonnet, G.: Fast text searching farlee@xpressions or automation searching on tries.
Journal of ACM 1996, Vol.43, No.6, pp. 915-936.

[2] Charikar, M., Indyk, P., Panigrahy, R.: New Algorithms fBubset Query, Partial Match, Orthogonal
Range Searching and Related Problems. LNCS 2002; Vol 2386,1p462.

[3] Helmer, S., Moerkotte, G.: A performance study of Four ba@ructures for Set-Valued Attributes of
Low Cardinality, The VLDB Journal AT The International Journal on Very Large Data Bases, Volume
12 Issue 3, 2003 pp. 244-261.

[4] Mannila, H., Toivonen, H.: Levelwise search and bordefsheories in knowl- edge discovery, Data
Mining and Knowledge Discovery Journal, 1(3), 1997, pp.-2%8.

[5] Melnik, S., Garcia-Molina, H.: Adaptive Algorithms fore® Containment Joins, ACM Transactions on
Database Systems, Vol. 28, No. 2, 2003, ppf\&é&

[6] Rivest, R.: Partial-Match Retrieval Algorithms. SIAMumal on Computing 1976; 5(1).

[7] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, @trdduction to Algorithms, Second Edition, MIT
Press, 2001.

[8] Savnik, I., Flach, P.A.:;, Bottom-up Induction of Funcial Dependencies from Relations. Proc. of
KDD93 Workshop: Knowledge Discovery from Databases, AAAEss, 1993, Washington, p. 174-185.

[9] Flach, P.A.,, Savnik, |.: Database dependency discowemachine learning approach. Al Communica-
tions, Vol.12, No.3, IOS Press, 1999, pp.139-160.

[10] Terrovitis, M., Passas, S., Vassiliadis, P., SellisAITCombination of Trie-trees and Inverted Files for the
Indexing of Set-valued Attributes, Proc. of ACM Internai#d Conference on Information and Knowledge
Management, 2006.

[11] Tousidou, E., Bozanis, P., Manolopoulos, Y.: Signetbased Structures for Objects with Set-valued
Attributes, Information Systems 27, 2002, pp. §$é.21.

[12] Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, Gn Supporting Containment Queries in
Relational Database Management Systems, ACM SIGMOD, 2001.

