2 Homework 2 (Four fundamental subspaces)

1. Let $(4,3,2,1)^{\top} \in \mathbb{R}^{4}$ be a given vector and let

$$
A=\left[\begin{array}{cccc}
a & -1 & 0 & 0 \\
a & b & -1 & 0 \\
a & 0 & b & -1 \\
a & 0 & 0 & b
\end{array}\right]
$$

denote a given matrix. Discus (and carefully explain) for which values of parameters a and b we have $(4,3,2,1)^{\top} \in \operatorname{im}(A)$.
2. Consider vector subspace of \mathbb{R}^{4} spanned by vectors $x_{1}=(-1,0,1,2)^{\top}, x_{2}=(1,2,-3,5)^{\top}$ and $x_{3}=(1,4,0,9)^{\top}$. Find system of homogeneous linear equations for which space of solution is exactly subspace of \mathbb{R}^{n} spanned by above three given vectors.
3. Explain is the set, which contains columns of matrix A, linearly independent set, if we have that

$$
A=\left[\begin{array}{cccccc}
7 & 3 & 0 & \ldots & 0 & 0 \\
2 & 7 & 3 & \ldots & 0 & 0 \\
0 & 2 & 7 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 7 & 3 \\
0 & 0 & 0 & \ldots & 2 & 7
\end{array}\right]_{n \times n}
$$

(solve the problem without computing $\operatorname{det}(A)$). Is the matrix A a singular matrix? (Recall: square matrix with no inverse is called a singular matrix.)
4. Find for which value of unknown x will vector $(0,1,1,4)^{\top} \in \mathbb{R}^{4}$ belong to $\operatorname{im}(A)$ if

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1-x & 1 & 1 & 1 \\
0 & 1-x & 1 & 1 \\
0 & 0 & 1-x & 1
\end{array}\right]
$$

