KAIST -+2[ate

|oF
H

Constructive algorithm for
path-width of matroids

(and more)
Sang-il Oum

P — Joint work with
Mathematical Sciences Jisu Jeong (KAIST)

Eun Jung Kim (CNRS-LAMSADE)
Algorithmic Graph Theory on the Adriatic Coast

Py
—}:&

-
- Nalozba v vaso prihodnost
UM AL DRIND FINANUIRA BV S L,

2015.6.17 Koper, Slovenia

ﬂ REPUBLIKA SLOVENIJA

MINISTRSTVO ZA IZOBRAZEVANJE,
ZNANOST IN SPORT

N
UNIVERY



Historical
backgrounds



Determining tree-width of
graphs

= 198T: O(nk) alg. (Arnborg, Corneil, and Proskurowski)

= 1995 O(nz) alg. (Robertson and Seymour) (GM XIllI)
= Step 1: find an “approximate” tree-decomp. of width=<f(k)
« Step 2: test forbidden minors for tree-width<k

+ 1994 “Self-reduction” technique (Fellows and Langston) — one can construct
such an algorithm without knowing the complete list of forbidden minors

+ 1996 (Bodlaender and Kloks)

« Dynamic Programming algorithm to do Step 2 without using forbidden
minors

This finds a path-decomposition
graphs (dynamic programming) Oora tree—decomposition as well.

Similar method for path-width of




Determining rank-width of
graphs

9 ls rank-width < k?

2006 (0., Seymour): O(n log n) algorithm | Rank-width > k
to find an “approximate” rank-decomp. S OATETen Ageii 1 Mo
. < Rank-decomposition of width < 3k
of width=<f(k) ; " ‘o
...Step1 (Improvedto O(n ) by O.2008) |Does it have an excluded vertex-minor? No
No
2005 (0O.): #forbidden vertex-minors is Yes
finite for each k
Q1: Bodlaender-Kloks type
2007 (Courcelle, O.): testing forbidden l ithm to find K
vertex-minors for graphs of bounded algorithm to find a rank-
rank-width ... Step 2 decomposition of width=<k?
2008 (Hlineny, O.): constructing a rank-
decomp of width<k by using algorithms Do we have a O . .
based on forbidden minors (using Q2: Constructive algorithm to decide

matroids) linear rank-width<k for fixed k?

KAIST 2=(zisr Our answer: Yes to Q1 and Q2




Solvable problems when rank-width is bounded (I)

Courcelle, Makowsky, and Rotics '00

Every graph problem expressible in

monadic second-order logic formula (with no edge-set variables)
is solvable in time O(n°)

for graphs having rank-width at most k for fixed k.

CMR’00: Minimize w(X) satisfying ¢(X) for graphs of bounded
Solvable prob rank-width.

CMR’01: Counting the number of true assignments in polynomial time.

(assuming unit time for arithmetic operations on R.)

Many other probils

_ Can | find a partition of vertices into three subsets such that each set
solved in polynon

has no edges inside? (graph 3-coloring problem)

@ Finding a cht

o Deciding whe AX13AXo3dXzVvWw(v, w € X3 = —adj(v, w))

@ Given a mon AVVWWW(v, w € Xo = —adj(v, w))
there is a pal AVVWwW(v,w e X3 = —adj(v,w)) - -- /
satisfied for ... .. \. .. <., -

All of these algorithms
@ need the rank-decomposition of width < k as an input, and
@ use the dynamic programming.




Arranging vectors —
Alternative view of
path-width of matroids



Arranging vectors:
A problem in coding theory

. Input: n vectorsinF.

- Goal: Find the minimum k such that there is a linear layout
V1, V2, ..., Vn Of the vectors such that
dim (<vi> N <vy,v3,...,vn>) <K,
dim (<vi,v2> N <vs,...,va>) <K,

dim (<vi,va,v3,...,vn-1> N <vp>)<K.

- Minimum such k = “Trellis State-Complexity of a linear code” or
“Trellis-Width” (coding theory)
or “Path-width” (matroid theory) — matroid representable over F

KAIST =2latstat



Computing
trellis-width (or path-width)

Deciding trellis-width<k is NP-complete (Kashyap07, 08)

What if k is fixed? — Remark in Kashyap’s paper (07)
4 Concluding Remarks

The main contribution of this paper was to show that the decision problem TREL-
LIS STATE-COMPLEXITY is NP-complete, thus settling a long-standing conjecture.
Now, the situation is rather different if we consider a variation of the problem in
which the mteger w 18 not taken to be a part of the mput to the problem In other
words, consider the following problem: ' ) T ‘

Problem: WEAK TRELLIS STATE-COMPLEXITY
Let I, be a fixed finite field, and let w be a fixed positive integer.

Instance: An m X n generator matrix for a linear code C over .
Question: Is there a coordinate permutation of C that yields a code C’ whose
minimal trellis has state-complexity at most w?

There is good reason to believe that this problem is solvable in polynomial time.




KAIST

For fixed k?

WQO(Well-quasi-ordering) Conjecture: F-representable matroids are well-quasi-ordered
by the minor relation. (no infinite antichain w.r.t. minors)

If true, then for every class X of F-representable matroids closed under taking minors,
there are finitely many F-representable matroids Mj, M, ..., M, such that Mis in X iff none
of M1,M,,...,M, is a minor of M.

Theorem (Geelen, Gerards, Whittle; 2012+): WQO Conj is true for finite F.

Corollary: For each k and F, there exists a finite list of matroids such that an F-repre.
matroid M has path-width<k iff none in the list is a minor of M.

Enough to check whether an input matroid has some minors in the finite list (which can be
done in poly time for matroids of bounded branch-width, shown by Hlineny.)

Trouble: 1. No algorithm known to construct the list of forbidden minors.
2. Even if you know the list, this doesn’t provide a linear ordering!

=2fatetat



Known algorithms for
path-width/branch-width of matroids

- STEP 1: Find an ag!:_)roximate branch-decomposition
(Hlineny 2006; O(n ) algorithm)

- STEP 2: Use the dynamic programming to test all forbidden minors for branch-
width=<k or path-width=<k.

k
- Branch-width: (the size of each forbidden minor)<(6 -1)/5
(Geelen, Gerards, Robertson, Whittle 2003)

- Path-width: (#forbidden minors) OPEN!
No upper bound is known; Finite due to WQO.

- STEP 3: Use step 2 to construct a branch-decomp of width<k (Hlineny, Oum)

- For path-width, an efficient algorithm exists but we did not know how to construct,

KAIST #alate

ic]




What’s new? (1/2)

- Theorem [Jeong, Kim, O.]
O( f(k) n3)-time algorithm to find
a linear layout vi, vo, ..., Vn
of the input n vectors in F™ such that
dim (<vi,va,...,vi> N <Vi:,...,vn>) <k for all i,
if it exists (when Fis a finite field)

- Qutcome: Fixed Parameter Tractable to decide
trellis-width=<k or
path-width <k of F-representable matroids

KAIST =2latstat



What’s new (2/2)
Extension to subspaces

For example, if

Vi=<vi> for all ii,

+ Theorem [Jeong, Kim, O.] then
O( f(k) n3)-time algorithm to find U
a linear layout Vi, Vo, ..., Vn
of the input n subspaces of F™ such that
dim ((Vi+Vot+...+Vi) N (Visrt+...+Vn)) <k for all i,
if it exists (when F is a finite field)

KAIST #2|ateta




Corollary to
Linear rank-width

+ Cut-rank function cutrke(X):=rank of X*(V-X) submatrix of
the adjacency matrix of a graph G

- Linear rank-width of a graph G:= min k such that

Flinear layout vi, vz, ..., vn Of the vertices with
cutrke({vi,va,...,vi}) <k for all i.

- NP-complete to decide linear rank-width=<k.

. THEOREM: For a fixed k,
O(n®)-time algorithm to decide linear rank-width<k. (NEW)

KAIST =2latstat




Corollary to
Linear rank-width

[f is the adjacency matrix of G and is the identity matrix, then
| A
over GF(2)

For a vertex vi,
let Vi=span of the i-th and (i+n)-th column vectors

EASY FACT: 2 * cutrke(X)=dim (( = {Vi:viEX}) N ( Z {Vi:vi€

Path-width of {V1\V2,...Vn}=2*(linear rank-width of G)

KAIST =2latstat



Corollary to
Linear clique-width

- Linear cligue-width= “linearized version of clique-width”

. EASY FACT: If linear rank-width=k, then
linear clique—widthS2k+l.

- NP-complete to decide linear clique-width<k (when k is not
fixed) (Fellows, Rosamond, Rotics, Szeider 2009)

- Corollary: The first approximation algorithm for linear clique-

width.
For a fixed k, O(n3)—time algorithm to find a linear clique-width

expression of width<2"+1 or confirms that linear cligue-width>k.

KAIST =2latstat




Bodlaender-Kloks type
algorithm for
path-width of “subspaces”



Path-width vs Branch-width
of (representable) matroids

Input: vi, vo, ..., vn: vectors in F™, Input: vi, vo, ..., vn: vectors in F™,
(F: finite field) (F: finite field)

Output: Yes if 3 permutation m of {1,2, Output: Yes if 3 subcubic tree T with a
NSt o bijection L:{leaves}—{vectors} s.t. ...

AN

dim(<v1 ,V4,V5,V2>ﬁ<V3,V6>)£k V3 ‘

dim(<v1,v3, Ve, Vo>N<vy, vs>)<k

Path-decomposition of width<k Branch-decomposition of width<k




Path-width vs Branch-width
of a subspace arrangement

Input: Vi, V2, ... ,Vn: subspaces in F™, Input: Vi, Vo, ..., Vn: subspaces in F™,
(F: finite field) (F: finite field)
Output: Yes if 3 permutation m of {1,2, Output: Yes if 3 subcubic tree T with a
conlsh o bijection L:{leaves}—{subspaces} s.t. ...

dim((V1+Va+Vs+Va)n(Vs+V))<k

dim((V1+Vs+ Vet Vo)N(Vat Vs))<k

Path-decomposition of width<k Branch-decomposition of width<k




Our algorithm

+ Input: n subspaces

We will discuss how to provide

such a decomposition later

. Assume that we are given
a branch-decomposition of width w.

- Task: Do the dynamic programming to enumerate
all “partial solutions” of width at most k.

KAIST #2|ateta




How to run dynamic-programming on
a “branch-decomposition of
subspaces”

KAIST =2latstat



Dynamic programming on a
branch-decomposition

. ./ Underlying space: My:= V,+V+V5s
é ‘/ Boundgry space By:= (Vo+V4+V5)N(Vi+V3+Ve)

If branch-

width<w, then shrink

4

we can keep
dim (B)<2w.

M1/B L M2/B

Mgl

KAIST =2latstat



Path-decomposition:
an alternative definition of path-width

. Let y={V1,V,, ..., Vn} be a subspace arrangement (set of

subspaces), <<y>=Vi1+Vo+ ... +Vq.

. A path-decomposition of <y
.= a sequence (S1,Sy,...,Sm) of subspaces of <<y>

with an injective function p:{1,2,---,n}—>{1,2,...,m}s.t. Vi&S,.
- Width of a path-decomposition :=max (Si+...+Si) N (Si+1+...+Sm).
- Sjis called a bag.

- THM: Alinear layout of width=<k < 3 path-dec. of width=k.

KAIST =2latstat



What do we keep?

For a path-decomposition (S1,S2,...,Sm)
For each “gap”, thereis a triple (L,R,A)

S1| S2|S30S54 |Ss5|S6| St

“Left subspace” | “Right subspace”
shown on B shown on B
L3=(S1+S2+S3) N B [R3=(S4+S5+Se+S7) N B

Extra connectivity not shownin B
A3=dim(S1+S2+S3) N (S4+Ss+Se+S7)—dim((S1+S2+S3) N (S4+Ss+Se+S7) N B)

For (M,B), we only need to keep a sequence of (L,R,A) in order to

determine whether we have a path-decomposition

KAIST =2latstat



B-trajectory for a subspace B

A path-decomposition (S1,S2,...,Sn-1)
. statistic:=triple (L,R,\) of X; :=51+S>+...+5;
subspaces L, R of Band A=0. Y;:=S;i1+...+S501

- B-trajectory:=a finite sequence
of statistics I'=a1,a2,...,an such
that

L(a1)SL(a2)E...EL(an),

R(a1)2R(az2)=2...2R(an).

- Width of a B-trajectory:= max A.

: YINB2YNB2YsnB 2 ... 2YaNB

- The canonical B-trajectoryofa o
h-decomposition (S1,S2,...,5n) nonnegative Iintegers

KAIST =2latstat




How to compress B-trajectories?
Typical sequences of Bodlaender and Kloks

"3:’."5::{55::\

- Reducing operation for a sequence of integers:
In a sequence ai,ay,...,an of integers,
remove a; if a; is between aj and ak and i<j<k.

Nteases
......
.. I
WIS

R

. 7(125392)=(192)

Ak

. 7(13845637)=(1837)

- Asequence is typical if no further reducing is possible.

+ Lemma (Bodlaender and Kloks 1996):
(#typical sequences consisting of {0,1,2,...,k}) < (8/3)2%.

KAIST =2latstat




iac?
S¢
iectorie
ress B'Frajto ries .
to comp  Btrajec
ow act
ccCOmp

.....
SR
...:::::.-:::::.'
..................
..................
I.l..'....." .....
..................
.................

"::..:‘.:: ......
.........’:.':'
i

dn
a2,-°°’
I=ai,
jectory

-trajec

ion for a B-t

atl

. oper

cing

. Redu

ai if B ak),an )an
remmlfakj), R(ai);\r\();i) and A(ak
L(ai)= fean
. be
A(aj) is

......
uuo.: ........
il

oooo

. ~-.'.‘:.’,"
e

dk

The
sible.
ing is pos by
ucing ed
f no further rejcelctOry obta
gQ—p—&:—ti " B-tra
|ector () is
-traJeC. o 1
AB ificat
. actl

comp

I'.
m
r

+1)gw
t1 52(2w
2ky 2w 2
2

then ((8/3)

:q, S

if dim(B) s of w

a: | octo

Lemm ¢ B-traj

° pac

(#com

22|}t
KAIST =+
T—



What to store during dynamic programming?
“Full Sets”

. For a subspace arrangement <y={V1,V2,..,Vn},
the full set FSk(<y’,B):=set of all B-trajectories of

width=<k that are better than some B-trajectories,

realizable in <.

. FSk(y,{0})#@a if and only if path-width=<k.

We aim to compute FSk(<y,{0}) by the dynamic programming

KAIST =2latstat



Computing the Full Set

KAIST #2|atetal

Underlying space: My:= V,+V4+Vs

- Boundary space By:= (Vy+V4+V5)N(Vi+V3+Ve)

At each leaf v, compute FS(My, Bv) “easy”
At each internal node v
with two children x and vy,
.+ compute FS(Mx, Bx+By) from FS(Mx, Bx)
» compute FS(My, Bx+By) from FS(My, By)
+ compute FS(My, Bx+By) from
FS(Myx, Bx+By) and FS(My, Bx+By)
.+ compute FS(My,Bv) from FS(Mv, Bx+By)

O(n)-time to compute FSk(<y,{0}).




How to provide an initial
“approximate” branch-decomposition

+ Method 1: Iterative compression; O(n) overhead
Modify the output for Vi,...,Via of width<k to be
the branch-decomposition of width<k+1.
TOTAL: O(n?) time (simpler but slower)

+ Method 2: Use the algorithm by Hlineny and Oum
(2008) that provides a branch-decomposition of
width=<kin O(n3)-time (faster)

TOTAL: O(n3) time.

KAIST =2latstat



Concluding remarks

- By backtracking, we can construct a linear layout of width=<k.

- Similar idea works for rank-width of graphs and branch-width
of matroids representable over a fixed finite field.

- Two bottlenecks for a faster algorithm:
- Finding an approximate branch-decomposition.

- Preprocessing the approximate branch-decomposition to

make it more useful for dynamic programming.
(e.g. Precompute a basis for each boundary space B)

THANKYOU FOR YOUR ATTENTION!
KAIST 42332}




