Constructive algorithm for path-width of matroids

 (and more)

 (and more)

 Sang-il Oum

 Sang-il Oum
 KAIST
 Department of Mathematical Sciences

Algorithmic Graph Theory on the Adriatic Coast 2015.6.17 Koper, Slovenia

Historical

backgrounds

Determining tree-width of graphs

* 1987: O(n ${ }^{k}$) alg. (Arnborg, Corneil, and Proskurowski)
* 1995: O(n^{2}) alg. (Robertson and Seymour) (GM XIII)
* Step 1: find an "approximate" tree-decomp. of width $\leq f(k)$
* Step 2: test forbidden minors for tree-width $\leq k$
* 1994 "Self-reduction" technique (Fellows and Langston) \rightarrow one can construct such an algorithm without knowing the complete list of forbidden minors
* 1996 (Bodlaender and Kloks)
* Dynamic Programming algorithm to do Step 2 without using forbidden minors

Similar method for path-width of graphs (dynamic programming)

This finds a path-decomposition or a tree-decomposition as well.

Determining rank-width of

graphs

- 2006 (O., Seymour): O($n^{9} \log n$) algorithm to find an "approximate" rank-decomp. of width $\leq f(k)$
...Step 1 (Improved to $\mathrm{O}\left(\mathrm{n}^{3}\right)$ by 0. 2008)
- 2005 (O.): \#forbidden vertex-minors is finite for each k
* 2007 (Courcelle, O.): testing forbidden vertex-minors for graphs of bounded rank-width ... Step 2
* 2008 (Hlineny, O.): constructing a rankdecomp of width $\leq k$ by using algorithms based on forbidden minors (using matroids)

Is rank-width $\leq k$?

Q1: Bodlaender-Kloks type algorithm to find a rankdecomposition of width $\leq k$?

Do we have a ...
Q2: Constructive algorithm to decide linear rank-width $\leq k$ for fixed k ?

Solvable problems when rank-width is bounded (I)

Courcelle, Makowsky, and Rotics '00

Every graph problem expressible in monadic second-order logic formula (with no edge-set variables) is solvable in time $O\left(n^{3}\right)$
for graphs having rank-width at most k for fixed k.

Solvable prob

CMR'00: Minimize $w(X)$ satisfying $\varphi(X)$ for graphs of bounded rank-width.
CMR'01: Counting the number of true assignments in polynomial time. (assuming unit time for arithmetic operations on \mathbb{R}.)

Many other probls solved in polynon

- Finding a chı
- Deciding whs
- Given a mon there is a pal satisfied for a

Can I find a partition of vertices into three subsets such that each set has no edges inside? (graph 3-coloring problem)

$$
\begin{aligned}
\exists X_{1} \exists X_{2} \exists X_{3} \forall v & \forall w\left(v, w \in X_{1} \Rightarrow \neg \operatorname{adj}(v, w)\right) \\
& \wedge \forall v \forall w\left(v, w \in X_{2} \Rightarrow \neg \operatorname{adj}(v, w)\right) \\
& \wedge \forall v \forall w\left(v, w \in X_{3} \Rightarrow \neg \operatorname{adj}(v, w)\right) \cdots
\end{aligned}
$$

All of these algorithms

- need the rank-decomposition of width $\leq k$ as an input, and
- use the dynamic programming.

Arranging vectors Alternative view of path-width of matroids

Arranging vectors:

A problem in coding theory

- Input: n vectors in \mathbb{F}^{m}.
- Goal: Find the minimum k such that there is a linear layout $v_{1}, v_{2}, \ldots, v_{n}$ of the vectors such that
$\operatorname{dim}\left(<v_{1}>\cap<v_{2}, v_{3}, \ldots, v_{n}>\right) \leq k$, $\operatorname{dim}\left(<v_{1}, v_{2}>\cap<v_{3}, \ldots, v_{n}>\right) \leq k$, $\operatorname{dim}\left(<v_{1}, v_{2}, v_{3}, \ldots, v_{n-1}>\cap<v_{n}>\right) \leq k$.
- Minimum such k= "Trellis State-Complexity of a linear code" or "Trellis-Width" (coding theory) or "Path-width" (matroid theory) - matroid representable over \mathbb{F}

Computing

trellis-width (or path-width)

- Deciding trellis-width $\leq \mathrm{k}$ is NP-complete (Kashyap07, 08)
- What if k is fixed? - Remark in Kashyap's paper (07)

4 Concluding Remarks
The main contribution of this paper was to show that the decision problem TrelLIS State-Complexity is NP-complete, thus settling a long-standing conjecture. Now, the situation is rather different if we consider a variation of the problem in which the integer w is not taken to be a part of the input to the problem. In other words, consider the following problem:

Problem: Weak Trellis State-Complexity

Let \mathbb{F}_{q} be a fixed finite field, and let w be a fixed positive integer.
Instance: An $m \times n$ generator matrix for a linear code \mathcal{C} over \mathbb{F}_{q}.
Question: Is there a coordinate permutation of \mathcal{C} that yields a code \mathcal{C}^{\prime} whose minimal trellis has state-complexity at most w ?

There is good reason to believe that this problem is solvable in polynomial time.

For fixed k?

* WQO(Well-quasi-ordering) Conjecture: \mathbb{F}-representable matroids are well-quasi-ordered by the minor relation. (no infinite antichain w.r.t. minors)
- If true, then for every class X of \mathbb{F}-representable matroids closed under taking minors, there are finitely many \mathbb{F}-representable matroids $M_{1}, M_{2}, \ldots, M_{n}$ such that M is in X iff none of $M_{1}, M_{2}, \ldots, M_{n}$ is a minor of M.
* Theorem (Geelen, Gerards, Whittle; 2012+): WQO Conj is true for finite \mathbb{F}.
- Corollary: For each k and \mathbb{F}, there exists a finite list of matroids such that an \mathbb{F}-repre. matroid M has path-width $\leq k$ iff none in the list is a minor of M.
* Enough to check whether an input matroid has some minors in the finite list (which can be done in poly time for matroids of bounded branch-width, shown by Hlineny.)
* Trouble: 1. No algorithm known to construct the list of forbidden minors. 2. Even if you know the list, this doesn't provide a linear ordering!

Known algorithms for
 path-width/branch-width of matroids

- STEP 1: Find an approximate branch-decomposition (Hlineny 2006; O(n) algorithm)
- STEP 2: Use the dynamic programming to test all forbidden minors for branchwidth $\leq k$ or path-width $\leq k$.
- Branch-width: (the size of each forbidden minor) $\leq\left(6^{k}-1\right) / 5$ (Geelen, Gerards, Robertson, Whittle 2003)
- Path-width: (\#forbidden minors) OPEN! No upper bound is known; Finite due to WQO.

- STEP 3: Use step 2 to construct a branch-decomp of width $\leq k$ (Hlineny, Oum)
- For path-width, an efficient algorithm exists but we did not know how to construct.

What's new? (1/2)

- Theorem [Jeong, Kim, O.] $\mathbf{O}\left(\mathrm{f}(\mathrm{k}) \mathrm{n}^{3}\right)$-time algorithm to find a linear layout $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ of the input n vectors in \mathbb{F}^{m} such that $\left.\left.\operatorname{dim}\left(<\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{i}}\right\rangle \cap<\mathrm{v}_{\mathrm{i}+1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\rangle\right) \leq \mathbf{k}$ for all i , if it exists (when \mathbb{F} is a finite field)
- Outcome: Fixed Parameter Tractable to decide trellis-width $\leq k$ or
path-width $\leq k$ of \mathbb{F}-representable matroids

What's new (2/2)

Extension to subspaces

- Theorem [Jeong, Kim, O.] $\mathbf{O}\left(f(k) \mathbf{n}^{3}\right)$-time algorithm to find

For example, if
$\mathrm{V}_{\mathrm{i}}=\left\langle\mathrm{V}_{\mathrm{i}}\right\rangle$ for all ii, then
matroid path-width a linear layout $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{n}}$ of the input n subspaces of \mathbb{F}^{m} such that $\operatorname{dim}\left(\left(V_{1}+V_{2}+\ldots+V_{i}\right) \cap\left(V_{i+1}+\ldots+V_{n}\right)\right) \leq k$ for all i, if it exists (when \mathbb{F} is a finite field)

Corollary to

Linear rank-width

- Cut-rank function cutrk (X) :=rank of $X^{*}(V-X)$ submatrix of the adjacency matrix of a graph G
- Linear rank-width of a graph $\mathrm{G}:=$ min k such that \exists linear layout $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ of the vertices with cutrk $\left(\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{i}}\right\}\right) \leq \mathrm{k}$ for all i .
- NP-complete to decide linear rank-width $\leq \mathrm{k}$.
- THEOREM: For a fixed k, $\mathrm{O}\left(\mathrm{n}^{3}\right)$-time algorithm to decide linear rank-width $\leq \mathrm{k}$. (NEW)

Corollary to

Linear rank-width

For a vertex vi, let $\mathrm{V}_{\mathrm{i}}=$ span of the i -th and $(\mathrm{i}+\mathrm{n})$-th column vectors

EASY FACT: 2 * cutrkg $(X)=\operatorname{dim}\left(\left(\Sigma\left\{\mathrm{V}_{\mathrm{i}:} \cdot \mathrm{V}_{\mathrm{i}} \in \mathrm{X}\right\}\right) \cap\left(\Sigma\left\{\mathrm{V}_{\mathrm{i}} \cdot \mathrm{V}_{\mathrm{i}} \notin \mathrm{X}\right\}\right)\right)$

Path-width of $\{\mathrm{V} 1, \mathrm{~V} 2, \ldots, \mathrm{Vn}\}=2 *$ (linear rank-width of G)

Corollary to

Linear clique-width

- Linear clique-width= "linearized version of clique-width"
- EASY FACT: If linear rank-width=k, then linear clique-width $\leq 2^{k}+1$.
- NP-complete to decide linear clique-width $\leq k$ (when k is not fixed) (Fellows, Rosamond, Rotics, Szeider 2009)
- Corollary: The first approximation algorithm for linear cliquewidth.
For a fixed $\mathrm{k}, \mathrm{O}\left(\mathrm{n}^{3}\right)$-time algorithm to find a linear clique-width expression of width $\leq 2^{k}+1$ or confirms that linear clique-width>k.

Bodlaender-Kloks type algorithm for path-width of "subspaces"

Path-width vs Branch-width of (representable) matroids

Input: $\mathrm{v}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$: vectors in \mathbb{F}^{m}.
(\mathbb{F} : finite field)
Output: Yes if \exists permutation π of $\{1,2$,
...,n\} s.t. ...

Input: $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$: vectors in \mathbb{F}^{m}.
(\mathbb{F} : finite field)
Output: Yes if \exists subcubic tree T with a bijection L:\{leaves\} $\rightarrow\{$ vectors\} s.t. . . .

Path-decomposition of width $\leq \mathrm{k}$

Branch-decomposition of width $\leq k$

Path-width vs Branch-width of a subspace arrangement

Input: $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{n}}$: subspaces in \mathbb{F}^{m}. (\mathbb{E} : finite field)
Output: Yes if \exists permutation π of $\{1,2$, ...,n\} s.t. ...

Input: $\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{n}}$: subspaces in \mathbb{F}^{m}.
(\mathbb{F} : finite field)
Output: Yes if \exists subcubic tree T with a bijection L:\{leaves\} \rightarrow \{subspaces\} s.t. ...

Path-decomposition of width $\leq k$

Our algorithm

- Input: n subspaces

We will discuss how to provide such a decomposition later

- Assume that we are given a branch-decomposition of width w.
- Task: Do the dynamic programming to enumerate all "partial solutions" of width at most k.

How to run dynamic-programming on

 a "branch-decomposition of subspaces"
Dynamic programming on a branch-decomposition

Path-decomposition:

an alternative definition of path-width

- Let $\mathcal{V}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{n}\right\}$ be a subspace arrangement (set of subspaces), $\langle\boldsymbol{\mathcal { V }}\rangle=\mathrm{V}_{1}+\mathrm{V}_{2}+\ldots+\mathrm{V}_{\mathrm{n}}$.
- A path-decomposition of \mathcal{V}
:= a sequence $\left(S_{1}, S_{2}, \ldots, S_{m}\right)$ of subspaces of $\langle\boldsymbol{\mathcal { V }}>$ with an injective function $\mu:\{1,2, \cdots, n\} \rightarrow\{1,2, \ldots, m\}$ s.t. $V_{i} \subseteq S_{\mu(i)}$.
- Width of a path-decomposition :=max $\left(\mathrm{S}_{1}+\ldots+\mathrm{S}_{\mathrm{i}}\right) \cap\left(\mathrm{S}_{\mathrm{i}+1}+\ldots+\mathrm{S}_{\mathrm{m}}\right)$.
- S_{i} is called a bag.
- THM: ヨlinear layout of width $\leq \mathrm{k} \Leftrightarrow \exists$ path-dec. of width $\leq \mathrm{k}$.

What do we keep?

Extra connectivity not shown in B $\lambda_{3}=\operatorname{dim}\left(S_{1}+S_{2}+S_{3}\right) \cap\left(S_{4}+S_{5}+S_{6}+S_{7}\right)-\operatorname{dim}\left(\left(S_{1}+S_{2}+S_{3}\right) \cap\left(S_{4}+S_{5}+S_{6}+S_{7}\right) \cap B\right)$

For (M, B), we only need to keep a sequence of (L, R, λ) in order to determine whether we have a path-decomposition

B-trajectory for a subspace B

A path-decomposition $\left(\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{n}-1}\right)$

- statistic:=triple (L, R, λ) of subspaces L, R of B and $\lambda \geq 0$.
- B-trajectory:=a finite sequence of statistics $\boldsymbol{\Gamma}=\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}$ such that
$\mathrm{L}\left(\mathrm{a}_{1}\right) \subseteq \mathrm{L}\left(\mathrm{a}_{2}\right) \subseteq \ldots \subseteq \mathrm{L}\left(\mathrm{a}_{\mathrm{n}}\right)$, $R\left(a_{1}\right) \supseteq R\left(a_{2}\right) \supseteq \ldots \supseteq R\left(a_{n}\right)$.
- Width of a B-trajectory:= $\max \lambda$.
- The canonical B-trajectory of a path-decomposition ($\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{n}}$)

$$
\begin{aligned}
& X_{i}:=S_{1}+S_{2}+\ldots+S_{i} \\
& Y_{i}:=S_{i+1}+\ldots+S_{n-1}
\end{aligned}
$$

How to compress B-trajectories?

Typical sequences of Bodlaender and Kloks

- Reducing operation for a sequence of integers: In a sequence $a_{1}, a_{2}, \ldots, a_{n}$ of integers, remove a_{j} if a_{j} is between a_{i} and a_{k} and $i<j<k$.
- $\tau(125392)=(192)$

- $\tau(13845637)=(1837)$
- A sequence is typical if no further reducing is possible.
- Lemma (Bodlaender and Kloks 1996):
(\#typical sequences consisting of $\{0,1,2, \ldots, k\}) \leq(8 / 3) 2^{2 k}$.

How to compress B-trajectories?

"Compact" B-trajectories

- Reducing operation for a B-trajectory $\boldsymbol{\Gamma}=\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}$ remove a_{j} if $L\left(a_{i}\right)=L\left(a_{k}\right), R\left(a_{i}\right)=R\left(a_{k}\right)$, and $\lambda\left(a_{j}\right)$ is between $\lambda\left(a_{i}\right)$ and $\lambda\left(a_{k}\right)$ and $i<j<k$.

- A B-trajectory is compact if no further reducing is possible. The compactification $\tau(\Gamma)$ is a compact B-trajectory obtained by reducing from Γ.
- Lemma: if $\operatorname{dim}(B)=w$ and $|\mathbb{F}|=q$, then (\#compact B-trajectories of width $\leq k$) $\leq\left((8 / 3) 2^{2 k}\right)^{2 w+1} 2^{2(2 w+1) q^{\wedge} w}$

What to store during dynamic programming? "Full Sets"

- For a subspace arrangement $\boldsymbol{\mathcal { V }}=\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, . ., \mathrm{V}_{n}\right\}$, the full set $F S_{k}(\boldsymbol{\mathcal { V }}, \mathrm{~B})$:=set of all B-trajectories of width $\leq k$ that are better than some B-trajectories, realizable in $\boldsymbol{\mathcal { V }}$.
- $\operatorname{FS}_{\mathrm{k}}(\boldsymbol{\mathcal { V }},\{0\}) \neq \varnothing$ if and only if path-width $\leq \mathrm{k}$.

We aim to compute $\mathrm{FS}_{k}(\mathcal{V},\{0\})$ by the dynamic programming

Computing the Full Set

Underlying space: $\mathrm{M}_{\mathrm{v}}:=\mathrm{V}_{2}+\mathrm{V}_{4}+\mathrm{V}_{5}$

Expand
Join
At each leaf v , compute $\mathrm{FS}\left(\mathrm{M}_{\mathrm{v}}, \mathrm{B}_{\mathrm{v}}\right)$ "easy"
At each internal node v with two children x and y,

- compute $\mathrm{FS}\left(\mathrm{M}_{\mathrm{x}}, \mathrm{B}_{\mathrm{x}}+\mathrm{B}_{\mathrm{y}}\right)$ from $\mathrm{FS}\left(\mathrm{M}_{\mathrm{x}}, \mathrm{B}_{\mathrm{x}}\right)$
- compute $\mathrm{FS}\left(\mathrm{M}_{y}, \mathrm{~B}_{\mathrm{x}}+\mathrm{B}_{y}\right)$ from $\mathrm{FS}\left(\mathrm{M}_{y}, \mathrm{~B}_{y}\right)$
- compute $F S\left(M_{v}, B_{x}+B_{y}\right)$ from
$F S\left(M_{x}, B_{x}+B_{y}\right)$ and $F S\left(M_{y}, B_{x}+B_{y}\right)$

Shrink
compute $F S\left(M_{v}, B_{v}\right)$ from $F S\left(M_{v}, B_{x}+B_{y}\right)$
$\mathrm{O}(\mathrm{n})$-time to compute $\mathrm{FS}_{k}(\mathcal{V},\{0\})$.

How to provide an initial

"approximate" branch-decomposition

- Method 1: Iterative compression; $\mathrm{O}(\mathrm{n})$ overhead Modify the output for $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{i}-1}$ of width $\leq \mathrm{k}$ to be the branch-decomposition of width $\leq k+1$. TOTAL: $O\left(n^{4}\right)$ time (simpler but slower)
- Method 2: Use the algorithm by Hlineny and Oum (2008) that provides a branch-decomposition of width $\leq \mathrm{k}$ in $\mathrm{O}\left(\mathrm{n}^{3}\right)$-time (faster) TOTAL: $O\left(n^{3}\right)$ time.

Concluding remarks

- By backtracking, we can construct a linear layout of width $\leq \mathrm{k}$.
- Similar idea works for rank-width of graphs and branch-width of matroids representable over a fixed finite field.
- Two bottlenecks for a faster algorithm:
- Finding an approximate branch-decomposition.
- Preprocessing the approximate branch-decomposition to make it more useful for dynamic programming. (e.g. Precompute a basis for each boundary space B)

