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Induced subgraph characterization 
of hereditary classes of graphs 

For an arbitrary set M of graphs, let Free(M) denote the class 
of graphs containing no induced subgraphs from M.   

Theorem. A class of graphs X is hereditary if and only if    
       X=Free(M) for some set M.   

M is the set of forbidden induced subgraphs for Free(M) 

Examples: 
• bipartite graphs = Free(C3,C5,C7,...) 
• forests = Free(C3,C4,C5,...) 
• line graphs = Free(M), where M is a 
set of 9 graphs one of which is the claw 

Dénes Kőnig (1916) 
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Fishburn, Peter C. An interval graph is not a comparability 
graph. J. Combinatorial Theory 8 1970 442--443.  

Theorem. Free(M)Free(N) if and only if for each graph GN 
there is a graph HM such that H is an induced subgraph of G 
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What makes the Maximum Independent Set 
problem easy in the class of line graphs? 

= claw K1,3= 

Line graphs  Claw-free graphs 

Sbihi, Najiba Algorithme de recherche d'un stable de cardinalité maximum 
dans un graphe sans étoile. (French) Discrete Math. 29 (1980), no. 1, 53–76.  
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If |Y|=2, then deg(y)=3 and deg(z)=deg(x)-1 

If |Y|=1, then vertex splitting is equivalent to  
an edge subdivision   
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Fact. The Max Independent Set problem is NP-complete 
for graphs of vertex degree at most 3. 

Fact. A double subdivision of an edge increases the 
independence number of the graph by exactly 1. 
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Corollary. The Max Independent Set problem is NP-
complete for graphs of degree at most 3 in the class     
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S is the class of graphs in which  
every connected component has  
the form Si,j,k. 

S1,1,1=claw 

Yes, if by forbidding any graph from S we obtain a class where the 
problem can be solved in polynomial time.   

Is S the only boundary class for the problem? 
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 The problem is solvable in polynomial time for  
 
S1,1,2-free graphs 
 
P5-free graphs 

Lozin, Vadim V.; Milanič, Martin A polynomial algorithm to 
find an independent set of maximum weight in a fork-free 
graph. J. Discrete Algorithms 6 (2008), no. 4, 595–604.  

Daniel Lokshtanov, Martin Vatshelle and Yngve Villanger  
Independent Set in P5-Free Graphs in Polynomial Time, 
SODA 2014 
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Conjecture 

If M is a finite set, then the Maximum Independent 
Set problem is polynomial-time solvable for graphs 
in Free(M) if and only if M contains a graph from S, 
i.e. for any graph GS, the problem is polynomial-
time solvable in Free(G).   



Did you know that 

The difference in the speed of clocks at different heights 
above the earth is now of considerable practical 
importance, with the advent of very accurate navigation 
systems based on signals from satellites. If one ignored 
the predictions of general relativity theory, the position 
that one calculated would be wrong by several miles! 

 
Stephen Hawking A brief history of time 



Algorithmic tools for Max Independent Set 

• Modular decomposition 
• Tree- and clique-width decompositions 
• Separating cliques 
• Augmenting graphs 
• Graph Transformations  
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G=(V,E) 

A 

B 
I 

Let H be a bipartite subgraph of 
G with parts A and B such that 

• A  I 
• B  V-I 
• the vertices of B do not 
have neighbours in I-A 
• |A|<|B| 

Then H is an augmenting graph 
for I 

Let G=(V,E) be a graph and 
I an independent set in G 

If there is an augmenting graph for I, then I is not maximum, 
because I*=(I-A)B is a larger independent set. 

From augmenting paths 
to augmenting graphs 
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I 

I* 

If I is not maximum and I* is a larger independent set, then       
the bipartite graph with parts I-I* and I*-I is augmenting for I. 

From augmenting paths 
to augmenting graphs 



G=(V,E) 

I 

I* 

If I is not maximum and I* is a larger independent set, then       
the bipartite graph with parts I-I* and I*-I is augmenting for I. 

Theorem of augmenting graphs. 
An independent set I is maximum if 
and only if there are no augmenting 
graphs for I. 

From augmenting paths 
to augmenting graphs 
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Theorem of augmenting paths.                                 
An independent set I in a claw-free graph is maximum      
if and only if there are no augmenting paths for I. 

Every connected bipartite claw-free 
graph is either a path or a cycle. 

Every connected augmenting graph 
in the class of claw-free graphs is a 
path with odd number of vertices.    



Line graphs  Claw-free ( -free) graphs 

Every bipartite claw-free graph has 
vertex degree at most 2. 

G=(V,E) 

I 

From augmenting paths         
to augmenting graphs and back 

Theorem of augmenting paths (Berge’s lemma).    
An independent set I in a claw-free graph is maximum      
if and only if there are no augmenting paths for I. 

Every connected bipartite claw-free 
graph is either a path or a cycle. 

Every connected augmenting graph 
in the class of claw-free graphs is a 
path with odd number of vertices.    
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Finding augmenting graphs 

1965: Edmonds proposed a polynomial-time algorithm for finding 
 augmenting paths in the class of line graphs. 

1980: Minty and Sbihi proposed a polynomial-time algorithm for 
 finding augmenting paths in the class of claw-free graphs. 

1999:  Alekseev characterized the structure of S1,1,2-free 
 augmenting graphs and proposed a polynomial-time 
 algorithm for finding augmenting graphs in this class  

1999:  Mosca characterized the structure of (P6,C4)-free 
 augmenting graphs and proposed a polynomial-time 
 algorithm for finding augmenting graphs in this class  

2006: Gerber, Hertz, Lozin proposed a polynomial algorithm for 
 finding augmenting paths in the class of S1,2,3-free graphs. 



Structure of augmenting graphs 
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Combinatorics of augmenting graphs 

augmenting 
paths Pk 

simple augmenting 
trees Tk 

complete bipartite  
graphs Kk,k+1 

P 

T 

K 

Theorem. Let X be a hereditary 
class. If X contains infinitely many 
augmenting graphs, then it 
contains at least one of P, T or K. 

Corollary. For any s,k,p, the maximum independent set problem for 
      (Ps,Tk,Kp,p)-free graphs can be solved in polynomial time.  

Theorem. Let X be a hereditary 
class. If X contains infinitely many 
graphs, then it contains either all 
complete or all edgeless graphs. 

Corollary. The maximum independent set problem can be solved in 
       polynomial time in the class of (S1,1,3,Kp,p)-free graphs.   

If p3, the class of (S1,1,3,Kp,p)-free graphs contains all claw-free graphs 



Some open problems related 
to augmenting graphs 

What is the complexity of detecting 
augmenting paths in general graphs? 

What is the structure of S1,2,2-free  augmenting graphs? 
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Cycle shrinking for  
the Maximum Matching problem 



Definition. A pair of non-adjacent vertices is called an even 
pair if every induced path between them has an even number 
of edges.  

Even pair contraction for  
Vertex Coloring and Maximum Clique 



Definition. A pair of non-adjacent vertices is called an even 
pair if every induced path between them has an even number 
of edges.  

Theorem. Contraction of an even pair to a single vertex 
does not change the chromatic number of the graph and 
the clique number of the graph. 

Even pair contraction for  
Vertex Coloring and Maximum Clique 



Crown rule reduction for  
the Minimum Vertex Cover problem 

I an independent set 

N(I) the neighbourhood of I 

M a matching covering all vertices of N(I) 

Crown 



Crown rule reduction for  
the Minimum Vertex Cover problem 

I an independent set 

N(I) the neighbourhood of I 

M a matching covering all vertices of N(I) 

Crown 
(G) is the size of a minimum vertex cover of G  

(G-Crown)=(G)-|N(I)|  



Crown rule reduction for  
the Minimum Vertex Cover problem 

I an independent set 

N(I) the neighbourhood of I 

M a matching covering all vertices of N(I) 

Crown 
(G) is the size of a minimum vertex cover of G  

(G-Crown)=(G)-|N(I)|  

(G) + (G)=|V(G)| 



Graph Transformations 

Neighbourhood reduction 

x y x 

(G)   =   (G’)  



Graph Transformations 

Vertex folding 

(G)   =   (G’) + 1  

x 

y z 

yz 



Graph Transformations 

Mirroring  

x 

u is a mirror of x 

clique 

Definition. Vertex u nonadjacent to x is a mirror of x 
if the neighbours of x non-adjacent to u form a clique. 



Graph Transformations 

Mirroring  

x 

u is a mirror of x 

clique 

Theorem. If x does not belong to 
any maximum independent set of 
the graph, then so does u.   

Definition. Vertex u nonadjacent to x is a mirror of x 
if the neighbours of x non-adjacent to u form a clique. 



Graph Transformations 

• Neighbourhood reduction 

• Vertex folding 

• Mirroring 

Fomin, Fedor V.; Grandoni, Fabrizio; Kratsch, Dieter  

A measure & conquer approach for the analysis of exact 

algorithms. J. ACM 56 (2009), no. 5, Art. 25, 32 pp.  
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The weight of a maximum independent set of the conflict 
graph coincides with the maximum of the posiform 
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Hertz, Alain On the use of Boolean methods for the computation of 

the stability number. Discrete Appl. Math. 76 (1997), 183–203.   

xyyxyx  1 BAT reduction 
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(1984) 83-97. 
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satisfiability problem, Discrete Applied  
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S. Even, A. Itai and A. Shamir, On the complexity of 
timetable and multicommodity flow problems, SIAM 
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x variable 

Clauses 

For every pair of clauses 
one of which contains x 
and the other its negation  

Detour: Struction vs Resolution 
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From independent sets  
back to matchings 

Is it possible to solve the maximum matching problem 
in polynomial time by means of graph transformations?  



Thank you 


