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Monotone generation

Consider a monotone property Π in a lattice
represented by a membership oracle

Max(Π) = { max’l elements v ∈ Π}.
Min(Π) = { min’l elements v 6∈ Π}.

Given Π, generate

Max(Π) (or Min(Π) or both).

Typically size(Π) � |Max(Π)|.
How to measure efficiency of
generation?
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Complexity of generation

Sequential generation

Given a monotone system Π of input size |Π| = N, an
algorithm A generates one-by-one the elements

Max(Π) = {v0,v1, ...,vM−1},

outputting vk at time tk (t0 ≤ t1 ≤ · · · ≤ tM).

Algorithm A is said to work

in total polynomial time, if tM ≤ poly(N,M)
in incremental polynomial time, if

tk ≤ poly(N,k) for all k ≤M

with polynomial delay, if

tk+1 − tk ≤ poly(N) for all k < M
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Hardness of generation

NEXT(Π,M)

Given a monotone system Π and M⊆Max(Π), decide if
M = Max(Π), and if not, find v ∈Max(Π) \M.

Theorem (Ms. Folklore, Bronze Age)

Max(Π) can be generated in incremental polynomial time if
and only if problem NEXT(Π,M) can be solved in polynomial
time for all M⊆Max(Π).

... (Lawler, Lenstra, and Rinnooy Kann, 1980) ...

Generation is hard if NEXT(Π,M) is NP-hard.
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Prime example for monotone generation

Hypergraph transversals

Let |U | = m and H ⊆ 2U be a hypergraph. Associate to it a
property Π = ΠH ⊆ 2U by

S ∈ Π ⇔ S is independent ⇔ H * S ∀H ∈ H

H∗ = Max(ΠH) is the family of maximal independent
sets of H.

Hd = {U \ S | S ∈Max(ΠH)} is the family of minimal
transversals of H.

H → Hd (or H → H∗) are known as the hypergraph
transversal or monotone dualization problems.
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Generating hypergraph transversals

Theorem (Fredmand and Khachiyan, 1996)

For any hypergraph H and an arbitrary family M⊆ Hd of its
minimal transversals, problem NEXT(H,M) can be solved in

O
(

(|H|+ |Hd|)o(log |H|+|Hd|)
)

time.

Claim (Eiter and Gottlob, 1995)

If for all hyperedges H ∈ H we have |H| ≤ k, where k is fixed,
then Hd can be generated in incremental polynomial time.

Claim (Boros, Elbassioni, Gurvich, and Khachiyan, 2004)

If any ` hyperedges of H intersect in at most k points, where k,
` are fixed, then Hd can be generated in incremental polynomial
time.
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Typical Monotone Systems

For a graph G = (V,E), b ∈ ZV
+, B ⊆ V × V , U ⊆ V

Find all maximal subsets F ⊆ E such that dF (v) ≤ b(v)
for all v ∈ V .

Find all minimal subsets F ⊆ E such that s and t are
connected in (V, F ) for all (s, t) ∈ B.

Find all maximal subsets F ⊆ E such that s and t are not
connected for all (s, t) ∈ B.

Find all minimal subsets F ⊆ E such that U is within one
connected component of (V, F ).

Find all maximal bipartite subgraphs of G.
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Typical Monotone Systems

For a directed graph D = (V,A), w ∈ RA

Find all minimal subsets F ⊆ A such that (V, F ) is
strongly connected.

Find all maximal subsets F ⊆ A such that (V, F ) is
acyclic.

Find all subsets C ⊆ A such that C is a simple directed
cycle and w(C) < 0.
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Typical Monotone Systems

For a directed graph D = (V,A), w ∈ RA

Find all minimal subsets F ⊆ A such that (V, F ) is
strongly connected.

Find all maximal subsets F ⊆ A such that (V, F ) is
acyclic.

Find all subsets C ⊆ A such that C is a simple directed
cycle and w(C) < 0. Whoops! NOT MONOTONE!
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Negative cycle free subgraphs’ polyhedron
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Let G = (V,E) be a directed graph, w : E → R, x ∈ RV , and
consider the system of linear inequalities

{xi − xj ≤ wij ∀ (i, j) ∈ E}

Min′l Infeasible Subsystems ! {C ⊆ E | C is a negative cycle }

Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyan, 2005)

Given a directed graph G with real weights on its arcs, generating all
negative cycles of G is NP-hard. Even if wij ∈ {±1} for all arcs
(i, j) ∈ E.

Corollary

Generating vertices of polyhedra is hard.



Monotone Generation Hardness Efficient Generation

Negative cycle free subgraphs’ polyhedron

2

-1

0

-3

-1

-1

1

-2

3

2

1

-2

Let G = (V,E) be a directed graph, w : E → R, x ∈ RV , and
consider the system of linear inequalities

{xi − xj ≤ wij ∀ (i, j) ∈ E}

Min′l Infeasible Subsystems ! {C ⊆ E | C is a negative cycle }

Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyan, 2005)

Given a directed graph G with real weights on its arcs, generating all
negative cycles of G is NP-hard. Even if wij ∈ {±1} for all arcs
(i, j) ∈ E.

Corollary

Generating vertices of polyhedra is hard.



Monotone Generation Hardness Efficient Generation

Negative cycle free subgraphs’ polyhedron

2

-1

0

-3

-1

-1

1

-2

3

2

1

-2

Let G = (V,E) be a directed graph, w : E → R, x ∈ RV , and
consider the system of linear inequalities

{xi − xj ≤ wij ∀ (i, j) ∈ E}

Min′l Infeasible Subsystems ! {C ⊆ E | C is a negative cycle }

Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyan, 2005)

Given a directed graph G with real weights on its arcs, generating all
negative cycles of G is NP-hard. Even if wij ∈ {±1} for all arcs
(i, j) ∈ E.

Corollary

Generating vertices of polyhedra is hard.



Monotone Generation Hardness Efficient Generation

Negative cycle free subgraphs’ polyhedron

2

-1

0

-3

-1

-1

1

-2

3

2

1

-2

Let G = (V,E) be a directed graph, w : E → R, x ∈ RV , and
consider the system of linear inequalities

{xi − xj ≤ wij ∀ (i, j) ∈ E}

Min′l Infeasible Subsystems ! {C ⊆ E | C is a negative cycle }

Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyan, 2005)

Given a directed graph G with real weights on its arcs, generating all
negative cycles of G is NP-hard. Even if wij ∈ {±1} for all arcs
(i, j) ∈ E.

Corollary

Generating vertices of polyhedra is hard.



Monotone Generation Hardness Efficient Generation

Negative cycle free subgraphs’ polyhedron

2

-1

0

-3

-1

-1

1

-2

3

2

1

-2

Let G = (V,E) be a directed graph, w : E → R, x ∈ RV , and
consider the system of linear inequalities

{xi − xj ≤ wij ∀ (i, j) ∈ E}

Min′l Infeasible Subsystems ! {C ⊆ E | C is a negative cycle }

Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyan, 2005)

Given a directed graph G with real weights on its arcs, generating all
negative cycles of G is NP-hard. Even if wij ∈ {±1} for all arcs
(i, j) ∈ E.

Corollary

Generating vertices of polyhedra is hard.



Monotone Generation Hardness Efficient Generation

Recepie to prove Hardness of Generation

I ⊆ 2V is an independence system if Y ⊆ X ∈ I implies Y ∈ I

Theorem (Lawler, Lenstra, and Rinnooy Kan, 1980)

If there is an algorithm generating the maximal independent
sets of an arbitrary independence system represented by a
membership oracle in incremental polynomial time, then
P=NP.

Given a CNF C1 ∧ C2 ∧ · · · ∧ Cm

Set V = {X1, X̄1, . . . , Xn, X̄n}
and define X ⊆ V independent if

either there is an index j such that X ∩ {Xj , X̄j} = ∅
or X ∩ Ci 6= ∅ for all i, and |X ∩ {Xj , X̄j}| ≤ 1 for all j.
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If there is an algorithm generating the maximal independent
sets of an arbitrary independence system represented by a
membership oracle in incremental polynomial time, then
P=NP.

Given a CNF C1 ∧ C2 ∧ · · · ∧ Cm

Set V = {X1, X̄1, . . . , Xn, X̄n}
and define X ⊆ V independent if

either there is an index j such that X ∩ {Xj , X̄j} = ∅
or X ∩ Ci 6= ∅ for all i, and |X ∩ {Xj , X̄j}| ≤ 1 for all j.
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Examples When Generation is Hard

Maximal infeasible solutions to a system of monotone
inequalities, B, Elbassioni, Gurvich, Khachiyan and
Makino, 2002.

Maximal frequent item sets, B, Gurvich, Khachiyan and
Makino, 2002.
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Recepie for Efficient Generation: Finding the first set ...

Assume we want to generate F = Min(Π) ⊆ 2V where Π is a
membership oracle for a monotone system.

Set V = {v1, v2, ..., vn} and F = V . If Π(F ) = 0 then
STOP (F = ∅.)
For i = 1, ..., n do: if Π(F \ {vi}) = 1 then set
F = F \ {vi}.
Output F .
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Recepie for Efficient Generation: Supergraphs

Define a directed graph D = (W,A) such that

W = F
There is a subset F0 ⊆ F ”easy to generate.”

For all F ∈W = F the set N+(F ) ⊆W can be generated
in incremental polynomial time.

For all F ∈W \ F0 there is an F0 → F path.

Theorem (Schwikowski and Speckenmeyer, 2002)

Then, F can be generated in incremental polynomial
time.
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Examples When Supergraphs Work

Minimal feedback arc-sets in directed graphs (Swikowski
and Speckenmeyer, 2002)

Minimal cut conjunctions in graphs (B, Borys, Elbassioni,
Gurvich, Khachiyan, and Makino, 2006)

Prefect 2-matchings (B, Elbassioni, and Gurvich, 2006)

Minimal edge-dominating sets (Golovach, Heggernes,
Kratsch, and Villager, 2012)
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Special Cases of Supergraphs: Flashlight Principle

Assume that for all X,Y ⊆ V , X ∩ Y = ∅ we can test in
polynomial time if there exists a set F ∈ F such that Y ⊆ F
and X ∩ F = ∅.

Theorem

Then F can be generated with polynomial delay.

Bridges of graphs, Tarjan, 1974

Paths, cuts in graphs, Read and Tarjan, 1975

...

Reverse search, Avis and Fukuda, 1993.

Blockers of perfect matchings, B, Elbassioni, and Gurvich,
2006.



Monotone Generation Hardness Efficient Generation

Special Cases of Supergraphs: Flashlight Principle

Assume that for all X,Y ⊆ V , X ∩ Y = ∅ we can test in
polynomial time if there exists a set F ∈ F such that Y ⊆ F
and X ∩ F = ∅.

Theorem

Then F can be generated with polynomial delay.

Bridges of graphs, Tarjan, 1974

Paths, cuts in graphs, Read and Tarjan, 1975

...

Reverse search, Avis and Fukuda, 1993.

Blockers of perfect matchings, B, Elbassioni, and Gurvich,
2006.



Monotone Generation Hardness Efficient Generation

Special Cases of Supergraphs: Flashlight Principle

Assume that for all X,Y ⊆ V , X ∩ Y = ∅ we can test in
polynomial time if there exists a set F ∈ F such that Y ⊆ F
and X ∩ F = ∅.

Theorem

Then F can be generated with polynomial delay.

Bridges of graphs, Tarjan, 1974

Paths, cuts in graphs, Read and Tarjan, 1975

...

Reverse search, Avis and Fukuda, 1993.

Blockers of perfect matchings, B, Elbassioni, and Gurvich,
2006.



Monotone Generation Hardness Efficient Generation

Special Cases of Supergraphs: Flashlight Principle

Assume that for all X,Y ⊆ V , X ∩ Y = ∅ we can test in
polynomial time if there exists a set F ∈ F such that Y ⊆ F
and X ∩ F = ∅.

Theorem

Then F can be generated with polynomial delay.

Bridges of graphs, Tarjan, 1974

Paths, cuts in graphs, Read and Tarjan, 1975

...

Reverse search, Avis and Fukuda, 1993.

Blockers of perfect matchings, B, Elbassioni, and Gurvich,
2006.



Monotone Generation Hardness Efficient Generation

Special Cases of Supergraphs: Flashlight Principle

Assume that for all X,Y ⊆ V , X ∩ Y = ∅ we can test in
polynomial time if there exists a set F ∈ F such that Y ⊆ F
and X ∩ F = ∅.

Theorem

Then F can be generated with polynomial delay.

Bridges of graphs, Tarjan, 1974

Paths, cuts in graphs, Read and Tarjan, 1975

...

Reverse search, Avis and Fukuda, 1993.

Blockers of perfect matchings, B, Elbassioni, and Gurvich,
2006.



Monotone Generation Hardness Efficient Generation

Special Cases of Supergraphs: Flashlight Principle

Assume that for all X,Y ⊆ V , X ∩ Y = ∅ we can test in
polynomial time if there exists a set F ∈ F such that Y ⊆ F
and X ∩ F = ∅.

Theorem

Then F can be generated with polynomial delay.

Bridges of graphs, Tarjan, 1974

Paths, cuts in graphs, Read and Tarjan, 1975

...

Reverse search, Avis and Fukuda, 1993.

Blockers of perfect matchings, B, Elbassioni, and Gurvich,
2006.



Monotone Generation Hardness Efficient Generation

Special Cases of Supergraphs: Flashlight Principle

Assume that for all X,Y ⊆ V , X ∩ Y = ∅ we can test in
polynomial time if there exists a set F ∈ F such that Y ⊆ F
and X ∩ F = ∅.

Theorem

Then F can be generated with polynomial delay.

Bridges of graphs, Tarjan, 1974

Paths, cuts in graphs, Read and Tarjan, 1975

...

Reverse search, Avis and Fukuda, 1993.

Blockers of perfect matchings, B, Elbassioni, and Gurvich,
2006.



Monotone Generation Hardness Efficient Generation

Outline

1 Monotone Generation
Definition of Problem
Complexity of Generation
Hardness of Generation
Hypergraph dualization
Typical Monotone Generation Problems

2 Hardness

3 Efficient Generation
Supergraphs
Flashlight Principle
Joint Generation
Uniformly Dual Bounded Systems



Monotone Generation Hardness Efficient Generation

Recepie for Efficient Generation: Joint Generation

Theorem (Gurvich and Khachiyan, 1999)

Given the membership oracle Π for a monotone property over
the finite set V , H = Min(Π), then the family H ∪Hd can be
generated in incremental quasi-polynomial time.

Corollary

If |Hd| ≤ poly(|H|, |V |, |Π|), then H can be generated in
quasi-polynomial total time.
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Recepie for Efficient Generation: Dual Boundedness

H ⊆ 2V is uniformly dual bounded if for all F ⊆ H we have

|Fd ∩Hd| ≤ poly(|F|, |V |, |Π|).

Theorem (B, Gurvich, Khachiyan and Makino, 2000)

If H is uniformly dual bounded, then it can be generated in
incremental quasi-polynomial time.
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Examples When Dual Boundedness Work

Partial and multiple transversals to hypergarphs, B,
Gurvich, Khachiyan and Makino, 2000.

Maximal sets independent in m matroids over the same
base, B, Elbassioni, Gurvich, and Khachiyan, 2002.

Disjunction of sparse boxes in m databases, B, Elbassioni,
Gurvich, and Khachiyan, 2002.

Minimal edges sets that make each of Vi, i = 1, ..m
connected, B, Elbassioni, Gurvich and Khachiyan, 2002.

Minimal collections of events the union of which have a
probability exceeding a threshold, B, Elbassioni, Gurvich,
and Khachiyan, 2002.

Minimal feasible solutions to a system of monotone linear
inequalities in binary variables, B. Elbassioni, Gurvich,
Khachiyan and Makino, 2002.



Monotone Generation Hardness Efficient Generation

Examples When Dual Boundedness Work

Partial and multiple transversals to hypergarphs, B,
Gurvich, Khachiyan and Makino, 2000.

Maximal sets independent in m matroids over the same
base, B, Elbassioni, Gurvich, and Khachiyan, 2002.

Disjunction of sparse boxes in m databases, B, Elbassioni,
Gurvich, and Khachiyan, 2002.

Minimal edges sets that make each of Vi, i = 1, ..m
connected, B, Elbassioni, Gurvich and Khachiyan, 2002.

Minimal collections of events the union of which have a
probability exceeding a threshold, B, Elbassioni, Gurvich,
and Khachiyan, 2002.

Minimal feasible solutions to a system of monotone linear
inequalities in binary variables, B. Elbassioni, Gurvich,
Khachiyan and Makino, 2002.



Monotone Generation Hardness Efficient Generation

Examples When Dual Boundedness Work

Partial and multiple transversals to hypergarphs, B,
Gurvich, Khachiyan and Makino, 2000.

Maximal sets independent in m matroids over the same
base, B, Elbassioni, Gurvich, and Khachiyan, 2002.

Disjunction of sparse boxes in m databases, B, Elbassioni,
Gurvich, and Khachiyan, 2002.

Minimal edges sets that make each of Vi, i = 1, ..m
connected, B, Elbassioni, Gurvich and Khachiyan, 2002.

Minimal collections of events the union of which have a
probability exceeding a threshold, B, Elbassioni, Gurvich,
and Khachiyan, 2002.

Minimal feasible solutions to a system of monotone linear
inequalities in binary variables, B. Elbassioni, Gurvich,
Khachiyan and Makino, 2002.



Monotone Generation Hardness Efficient Generation

Examples When Dual Boundedness Work

Partial and multiple transversals to hypergarphs, B,
Gurvich, Khachiyan and Makino, 2000.

Maximal sets independent in m matroids over the same
base, B, Elbassioni, Gurvich, and Khachiyan, 2002.

Disjunction of sparse boxes in m databases, B, Elbassioni,
Gurvich, and Khachiyan, 2002.

Minimal edges sets that make each of Vi, i = 1, ..m
connected, B, Elbassioni, Gurvich and Khachiyan, 2002.

Minimal collections of events the union of which have a
probability exceeding a threshold, B, Elbassioni, Gurvich,
and Khachiyan, 2002.

Minimal feasible solutions to a system of monotone linear
inequalities in binary variables, B. Elbassioni, Gurvich,
Khachiyan and Makino, 2002.



Monotone Generation Hardness Efficient Generation

Examples When Dual Boundedness Work

Partial and multiple transversals to hypergarphs, B,
Gurvich, Khachiyan and Makino, 2000.

Maximal sets independent in m matroids over the same
base, B, Elbassioni, Gurvich, and Khachiyan, 2002.

Disjunction of sparse boxes in m databases, B, Elbassioni,
Gurvich, and Khachiyan, 2002.

Minimal edges sets that make each of Vi, i = 1, ..m
connected, B, Elbassioni, Gurvich and Khachiyan, 2002.

Minimal collections of events the union of which have a
probability exceeding a threshold, B, Elbassioni, Gurvich,
and Khachiyan, 2002.

Minimal feasible solutions to a system of monotone linear
inequalities in binary variables, B. Elbassioni, Gurvich,
Khachiyan and Makino, 2002.



Monotone Generation Hardness Efficient Generation

Examples When Dual Boundedness Work

Partial and multiple transversals to hypergarphs, B,
Gurvich, Khachiyan and Makino, 2000.

Maximal sets independent in m matroids over the same
base, B, Elbassioni, Gurvich, and Khachiyan, 2002.

Disjunction of sparse boxes in m databases, B, Elbassioni,
Gurvich, and Khachiyan, 2002.

Minimal edges sets that make each of Vi, i = 1, ..m
connected, B, Elbassioni, Gurvich and Khachiyan, 2002.

Minimal collections of events the union of which have a
probability exceeding a threshold, B, Elbassioni, Gurvich,
and Khachiyan, 2002.

Minimal feasible solutions to a system of monotone linear
inequalities in binary variables, B. Elbassioni, Gurvich,
Khachiyan and Makino, 2002.



Monotone Generation Hardness Efficient Generation

Recepie for Efficient Generation: Dual Boundedness

Theorem (B, Elbassioni, Gurvich, Khachiyan, and Makino,
2005)

Almost all monotone systems are uniformly dual bounded!
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Congratulations to the Organizing Committee!!!

Nastja Cepak
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Martin Milanič
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