Generation of Monotone Graph Structures

Endre Boros^{*}

MSIS Department and RUTCOR, Rutgers University

AGTAC, Koper, June 16-19, 2015

^{*}Based on joint results with K. Elbassioni, V. Gurvich, L. Khachiyan (1952-2005), and K. Makino

Monotone Generation

Hardness

Efficient Generation

In Memory of Leo Khachiyan (1952-2005)

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Outline

1 Monotone Generation

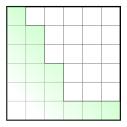
- Definition of Problem
- Complexity of Generation
- Hardness of Generation
- Hypergraph dualization
- Typical Monotone Generation Problems

2 Hardness

3 Efficient Generation

- Supergraphs
- Flashlight Principle
- Joint Generation
- Uniformly Dual Bounded Systems

Monotone generation



Consider a monotone property 11 in a lattice represented by a membership oracle

Max(Π) = { max'l elements v ∈ Π}.
Min(Π) = { min'l elements v ∉ Π}.

Given , generate

- or Max(22) (or Min(22) or both)
- Typically size(0) << [Max(0)].
- o How to measure efficiency of

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

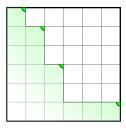
Monotone Generation ⊙●○○○○○○○○○○

Hardness

Efficient Generation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

Monotone generation



Consider a monotone property 11 in a lattice represented by a membership oracle

 $\bullet \ \mathbf{Max}(\mathbf{\Pi}) \ = \ \{ \ \mathrm{max'l \ elements} \ \mathbf{v} \in \mathbf{\Pi} \}.$

• $Min(\overline{\Pi}) = \{ min'l \text{ elements } \mathbf{v} \notin \Pi \}$

Given II, generate

- $Max(\Pi)$ (or $Min(\Pi)$ or both)
- Typically size(Ω) \ll [Max(Ω)].
- How to measure efficiency of

eration fraction for the second se

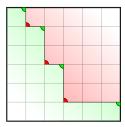
Monotone Generation

Hardness

Efficient Generation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

Monotone generation



Consider a monotone property 11 in a lattice represented by a membership oracle

- $Max(\Pi) = \{ max'l elements v \in \Pi \}.$
- $Min(\overline{\Pi}) = \{ min'l elements v \notin \Pi \}.$

Given II, generate

- $Max(\Pi)$ (or $Min(\Pi)$ or both)
- Typically size(Π) \ll |Max(Π)|.
- How to measure efficiency of

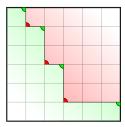
generation

Monotone Generation o•ooooooooooo

Hardness

Efficient Generation

Monotone generation



Consider a monotone property 11 in a lattice represented by a membership oracle

- $Max(\Pi) = \{ max'l elements v \in \Pi \}.$
- $Min(\overline{\Pi}) = \{ min'l elements v \notin \Pi \}.$

Given Π , generate

- $Max(\Pi)$ (or $Min(\overline{\Pi})$ or both).
- Typically size(Π) \ll $|Max(\Pi)|$.
- How to measure efficiency of

・ロト ・四ト ・ヨト ・ヨー うらぐ

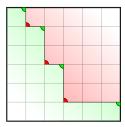
Monotone Generation ⊙●○○○○○○○○○○

Hardness

Efficient Generation

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Monotone generation



Consider a monotone property 11 in a lattice represented by a membership oracle

- $Max(\Pi) = \{ max'l elements v \in \Pi \}.$
- $Min(\overline{\Pi}) = \{ min'l elements v \notin \Pi \}.$

Given Π , generate

- $Max(\Pi)$ (or $Min(\overline{\Pi})$ or both).
- Typically $\operatorname{size}(\Pi) \ll |\operatorname{Max}(\Pi)|$.
- How to measure efficiency of generation?

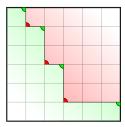
Monotone Generation o•ooooooooooo

Hardness

Efficient Generation

ション ふゆ マ キャット マックシン

Monotone generation



Consider a monotone property 11 in a lattice represented by a membership oracle

- $Max(\Pi) = \{ max'l elements v \in \Pi \}.$
- $Min(\overline{\Pi}) = \{ min'l elements v \notin \Pi \}.$

Given Π , generate

- $Max(\Pi)$ (or $Min(\overline{\Pi})$ or both).
- Typically $\operatorname{size}(\Pi) \ll |\operatorname{Max}(\Pi)|$.
- How to measure efficiency of generation?

うして ふゆう ふほう ふほう ふしつ

Outline

1 Monotone Generation

• Definition of Problem

• Complexity of Generation

- Hardness of Generation
- Hypergraph dualization
- Typical Monotone Generation Problems

2 Hardness

3 Efficient Generation

- Supergraphs
- Flashlight Principle
- Joint Generation
- Uniformly Dual Bounded Systems

Complexity of generation

Sequential generation

• Given a monotone system Π of input size $|\Pi| = N$, an algorithm \mathfrak{A} generates one-by-one the elements

$$\mathbf{Max}(\mathbf{\Pi}) = \{\mathbf{v_0}, \mathbf{v_1}, ..., \mathbf{v_{M-1}}\},\$$

outputting $\mathbf{v_k}$ at time $\mathbf{t_k}$ $(\mathbf{t_0} \leq \mathbf{t_1} \leq \cdots \leq \mathbf{t_M})$.

• Algorithm \mathfrak{A} is said to work

in total polynomial time, if $t_M \leq poly(N)$, in incremental polynomial time, if

 $\mathbf{t_k} \leq \mathbf{poly}(\mathbf{N}, \mathbf{k})$ for all $\mathbf{k} \leq \mathbf{M}$

· • ㅁ > • @ > • 돈 > • 돈 > · 돈 · ? ?

Complexity of generation

Sequential generation

• Given a monotone system Π of input size $|\Pi| = \mathbf{N}$, an algorithm \mathfrak{A} generates one-by-one the elements

$$\mathbf{Max}(\mathbf{\Pi}) = \{\mathbf{v_0}, \mathbf{v_1}, ..., \mathbf{v_{M-1}}\},\$$

 ${\rm outputting} \ \mathbf{v_k} \ {\rm at} \ {\rm time} \ \mathbf{t_k} \quad (\mathbf{t_0} \leq \mathbf{t_1} \leq \cdots \leq \mathbf{t_M}).$

- Algorithm \mathfrak{A} is said to work
 - in total polynomial time, if $t_M \le poly(N, M)$
 - in incremental polynomial time, if

 $\mathbf{t_k} \le \mathbf{poly}(\mathbf{N}, \mathbf{k}) \quad \text{ for all } \quad \mathbf{k} \le \mathbf{M}$

• with polynomial delay, if

 $\mathbf{t_{k+1}} - \mathbf{t_k} \leq \mathbf{poly}(\mathbf{N}) \quad \mathrm{ for \ all } \quad \mathbf{k} < \mathbf{M}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Complexity of generation

Sequential generation

• Given a monotone system Π of input size $|\Pi| = \mathbf{N}$, an algorithm \mathfrak{A} generates one-by-one the elements

$$\mathbf{Max}(\mathbf{\Pi}) = \{\mathbf{v_0}, \mathbf{v_1}, ..., \mathbf{v_{M-1}}\},\$$

 ${\rm outputting} \ \mathbf{v_k} \ {\rm at} \ {\rm time} \ \mathbf{t_k} \quad (\mathbf{t_0} \leq \mathbf{t_1} \leq \cdots \leq \mathbf{t_M}).$

- $\bullet\,$ Algorithm ${\mathfrak A}$ is said to work
 - in total polynomial time, if $t_M \leq poly(N, M)$
 - in incremental polynomial time, if

 $\mathbf{t_k} \leq \mathbf{poly}(\mathbf{N}, \mathbf{k}) \quad \text{ for all } \quad \mathbf{k} \leq \mathbf{M}$

• with polynomial delay, if

 $\mathbf{t_{k+1}} - \mathbf{t_k} \leq \mathbf{poly}(\mathbf{N}) \quad \mathrm{ for \ all } \quad \mathbf{k} < \mathbf{M}$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 のへで

Complexity of generation

Sequential generation

• Given a monotone system Π of input size $|\Pi| = \mathbf{N}$, an algorithm \mathfrak{A} generates one-by-one the elements

$$\mathbf{Max}(\mathbf{\Pi}) = \{\mathbf{v_0}, \mathbf{v_1}, ..., \mathbf{v_{M-1}}\},\$$

 ${\rm outputting} \ \mathbf{v_k} \ {\rm at} \ {\rm time} \ \mathbf{t_k} \quad (\mathbf{t_0} \leq \mathbf{t_1} \leq \cdots \leq \mathbf{t_M}).$

- Algorithm \mathfrak{A} is said to work
 - in total polynomial time, if $t_M \leq poly(N, M)$
 - in incremental polynomial time, if

 $\mathbf{t_k} \le \mathbf{poly}(\mathbf{N}, \mathbf{k}) \quad \text{ for all } \quad \mathbf{k} \le \mathbf{M}$

• with polynomial delay, if

 $\mathbf{t_{k+1}} - \mathbf{t_k} \leq \mathbf{poly}(\mathbf{N}) \quad \ \mathrm{for \ all} \quad \ \mathbf{k} < \mathbf{M}$

うして ふゆう ふほう ふほう ふしつ

Outline

1 Monotone Generation

- Definition of Problem
- Complexity of Generation

• Hardness of Generation

- Hypergraph dualization
- Typical Monotone Generation Problems
- 2 Hardness

3 Efficient Generation

- Supergraphs
- Flashlight Principle
- Joint Generation
- Uniformly Dual Bounded Systems

Hardness of generation

$\operatorname{NEXT}(\Pi, \mathcal{M})$

Given a monotone system Π and $\mathcal{M} \subseteq \mathbf{Max}(\Pi)$, decide if $\mathcal{M} = \mathbf{Max}(\Pi)$, and if not, find $\mathbf{v} \in \mathbf{Max}(\Pi) \setminus \mathcal{M}$.

Theorem (Ms. Folklore, Bronze Age)

 $\mathbf{Max}(\mathbf{\Pi})$ can be generated in incremental polynomial time if and only if problem $NEXT(\mathbf{\Pi}, \mathcal{M})$ can be solved in polynomial time for all $\mathcal{M} \subseteq \mathbf{Max}(\mathbf{\Pi})$.

... (Lawler, Lenstra, and Rinnooy Kann, 1980) ...

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Generation is hard if NEXT(Π , \mathcal{M}) is NP-hard.

うして ふゆう ふほう ふほう ふしつ

Hardness of generation

$\operatorname{NEXT}(\mathbf{II}, \mathcal{M})$

Given a monotone system Π and $\mathcal{M} \subseteq \mathbf{Max}(\Pi)$, decide if $\mathcal{M} = \mathbf{Max}(\Pi)$, and if not, find $\mathbf{v} \in \mathbf{Max}(\Pi) \setminus \mathcal{M}$.

Theorem (Ms. Folklore, Bronze Age)

 $\mathbf{Max}(\mathbf{\Pi})$ can be generated in incremental polynomial time if and only if problem $NEXT(\mathbf{\Pi}, \mathcal{M})$ can be solved in polynomial time for all $\mathcal{M} \subseteq \mathbf{Max}(\mathbf{\Pi})$.

... (Lawler, Lenstra, and Rinnooy Kann, 1980) ...

Generation is hard if $NEXT(\Pi, \mathcal{M})$ is NP-hard.

Hardness of generation

$\operatorname{NEXT}(\mathbf{II}, \mathcal{M})$

Given a monotone system Π and $\mathcal{M} \subseteq \mathbf{Max}(\Pi)$, decide if $\mathcal{M} = \mathbf{Max}(\Pi)$, and if not, find $\mathbf{v} \in \mathbf{Max}(\Pi) \setminus \mathcal{M}$.

Theorem (Ms. Folklore, Bronze Age)

 $\mathbf{Max}(\mathbf{\Pi})$ can be generated in incremental polynomial time if and only if problem $NEXT(\mathbf{\Pi}, \mathcal{M})$ can be solved in polynomial time for all $\mathcal{M} \subseteq \mathbf{Max}(\mathbf{\Pi})$.

... (Lawler, Lenstra, and Rinnooy Kann, 1980) ...

Generation is hard if $NEXT(\Pi, \mathcal{M})$ is NP-hard.

Hardness of generation

$\operatorname{NEXT}(\mathbf{II}, \mathcal{M})$

Given a monotone system Π and $\mathcal{M} \subseteq \mathbf{Max}(\Pi)$, decide if $\mathcal{M} = \mathbf{Max}(\Pi)$, and if not, find $\mathbf{v} \in \mathbf{Max}(\Pi) \setminus \mathcal{M}$.

Theorem (Ms. Folklore, Bronze Age)

 $\mathbf{Max}(\mathbf{\Pi})$ can be generated in incremental polynomial time if and only if problem $NEXT(\mathbf{\Pi}, \mathcal{M})$ can be solved in polynomial time for all $\mathcal{M} \subseteq \mathbf{Max}(\mathbf{\Pi})$.

... (Lawler, Lenstra, and Rinnooy Kann, 1980) ...

Generation is hard if $NEXT(\Pi, M)$ is NP-hard.

うして ふゆう ふほう ふほう ふしつ

Outline

1 Monotone Generation

- Definition of Problem
- Complexity of Generation
- Hardness of Generation

• Hypergraph dualization

• Typical Monotone Generation Problems

2 Hardness

3 Efficient Generation

- Supergraphs
- Flashlight Principle
- Joint Generation
- Uniformly Dual Bounded Systems

Hypergraph transversals

Let |U| = m and $\mathcal{H} \subseteq 2^U$ be a hypergraph. Associate to it a property $\Pi = \Pi_{\mathcal{H}} \subseteq 2^U$ by

 $S \in \Pi \iff S \text{ is independent} \iff H \nsubseteq S \qquad \forall H \in \mathcal{H}$

- $\mathcal{H}^* = Max(\mathbf{\Pi}_{\mathcal{H}})$ is the family of maximal independent sets of \mathcal{H} .
- $\mathcal{H}^d = \{U \setminus S \mid S \in Max(\Pi_{\mathcal{H}})\}$ is the family of minimal transversals of \mathcal{H} .
- $\mathcal{H} \to \mathcal{H}^d$ (or $\mathcal{H} \to \mathcal{H}^*$) are known as the hypergraph transversal or monotone dualization problems.

Hypergraph transversals

Let |U| = m and $\mathcal{H} \subseteq 2^U$ be a hypergraph. Associate to it a property $\Pi = \Pi_{\mathcal{H}} \subseteq 2^U$ by

- $\mathcal{H}^* = Max(\Pi_{\mathcal{H}})$ is the family of maximal independent sets of \mathcal{H} .
- $\mathcal{H}^d = \{U \setminus S \mid S \in Max(\Pi_{\mathcal{H}})\}$ is the family of minimal transversals of \mathcal{H} .
- $\mathcal{H} \to \mathcal{H}^d$ (or $\mathcal{H} \to \mathcal{H}^*$) are known as the hypergraph transversal or monotone dualization problems.

Hypergraph transversals

Let |U| = m and $\mathcal{H} \subseteq 2^U$ be a hypergraph. Associate to it a property $\Pi = \Pi_{\mathcal{H}} \subseteq 2^U$ by

- $\mathcal{H}^* = Max(\Pi_{\mathcal{H}})$ is the family of maximal independent sets of \mathcal{H} .
- $\mathcal{H}^d = \{U \setminus S \mid S \in Max(\Pi_{\mathcal{H}})\}$ is the family of minimal transversals of \mathcal{H} .
- $\mathcal{H} \to \mathcal{H}^d$ (or $\mathcal{H} \to \mathcal{H}^*$) are known as the hypergraph transversal or monotone dualization problems.

Hypergraph transversals

Let |U| = m and $\mathcal{H} \subseteq 2^U$ be a hypergraph. Associate to it a property $\Pi = \Pi_{\mathcal{H}} \subseteq 2^U$ by

- $\mathcal{H}^* = Max(\Pi_{\mathcal{H}})$ is the family of maximal independent sets of \mathcal{H} .
- $\mathcal{H}^d = \{U \setminus S \mid S \in Max(\Pi_{\mathcal{H}})\}$ is the family of minimal transversals of \mathcal{H} .
- $\mathcal{H} \to \mathcal{H}^d$ (or $\mathcal{H} \to \mathcal{H}^*$) are known as the hypergraph transversal or monotone dualization problems.

Hypergraph transversals

Let |U| = m and $\mathcal{H} \subseteq 2^U$ be a hypergraph. Associate to it a property $\Pi = \Pi_{\mathcal{H}} \subseteq 2^U$ by

- $\mathcal{H}^* = Max(\Pi_{\mathcal{H}})$ is the family of maximal independent sets of \mathcal{H} .
- $\mathcal{H}^d = \{U \setminus S \mid S \in Max(\Pi_{\mathcal{H}})\}$ is the family of minimal transversals of \mathcal{H} .
- *H* → *H^d* (or *H* → *H*^{*}) are known as the hypergraph transversal or monotone dualization problems.

Generating hypergraph transversals

Theorem (Fredmand and Khachiyan, 1996)

For any hypergraph \mathcal{H} and an arbitrary family $\mathcal{M} \subseteq \mathcal{H}^d$ of its minimal transversals, problem $NEXT(\mathcal{H}, \mathcal{M})$ can be solved in $O\left((|\mathcal{H}| + |\mathcal{H}^d|)^{o(\log |\mathcal{H}| + |\mathcal{H}^d|)}\right)$ time.

Claim (Eiter and Gottlob, 1995)

If for all hyperedges $H \in \mathcal{H}$ we have $|H| \leq k$, where k is fixed, then \mathcal{H}^d can be generated in incremental polynomial time.

Claim (Boros, Elbassioni, Gurvich, and Khachiyan, 2004)

If any l hyperedges of \mathcal{H} intersect in at most k points, where k, l are fixed, then \mathcal{H}^d can be generated in incremental polynomial time.

Generating hypergraph transversals

Theorem (Fredmand and Khachiyan, 1996)

For any hypergraph \mathcal{H} and an arbitrary family $\mathcal{M} \subseteq \mathcal{H}^d$ of its minimal transversals, problem $NEXT(\mathcal{H}, \mathcal{M})$ can be solved in $O\left((|\mathcal{H}| + |\mathcal{H}^d|)^{o(\log |\mathcal{H}| + |\mathcal{H}^d|)}\right)$ time.

Claim (Eiter and Gottlob, 1995)

If for all hyperedges $H \in \mathcal{H}$ we have $|H| \leq k$, where k is fixed, then \mathcal{H}^d can be generated in incremental polynomial time.

Claim (Boros, Elbassioni, Gurvich, and Khachiyan, 2004)

If any ℓ hyperedges of \mathcal{H} intersect in at most k points, where k, ℓ are fixed, then \mathcal{H}^d can be generated in incremental polynomial time.

Generating hypergraph transversals

Theorem (Fredmand and Khachiyan, 1996)

For any hypergraph \mathcal{H} and an arbitrary family $\mathcal{M} \subseteq \mathcal{H}^d$ of its minimal transversals, problem $NEXT(\mathcal{H}, \mathcal{M})$ can be solved in $O\left((|\mathcal{H}| + |\mathcal{H}^d|)^{o(\log |\mathcal{H}| + |\mathcal{H}^d|)}\right)$ time.

Claim (Eiter and Gottlob, 1995)

If for all hyperedges $H \in \mathcal{H}$ we have $|H| \leq k$, where k is fixed, then \mathcal{H}^d can be generated in incremental polynomial time.

Claim (Boros, Elbassioni, Gurvich, and Khachiyan, 2004)

If any ℓ hyperedges of \mathcal{H} intersect in at most k points, where k, ℓ are fixed, then \mathcal{H}^d can be generated in incremental polynomial time.

うして ふゆう ふほう ふほう ふしつ

Outline

1 Monotone Generation

- Definition of Problem
- Complexity of Generation
- Hardness of Generation
- Hypergraph dualization
- Typical Monotone Generation Problems
- 2 Hardness

3 Efficient Generation

- Supergraphs
- Flashlight Principle
- Joint Generation
- Uniformly Dual Bounded Systems

Typical Monotone Systems

For a graph $G = (V, E), b \in \mathbb{Z}_+^V, B \subseteq V \times V, U \subseteq V$

- Find all maximal subsets $F \subseteq E$ such that $d_F(v) \leq b(v)$ for all $v \in V$.
- Find all **minimal** subsets $F \subseteq E$ such that s and t are connected in (V, F) for all $(s, t) \in B$.
- Find all maximal subsets $F \subseteq E$ such that s and t are not connected for all $(s,t) \in B$.
- Find all **minimal** subsets $F \subseteq E$ such that U is within one connected component of (V, F).
- Find all **maximal** bipartite subgraphs of G.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Typical Monotone Systems

- Find all maximal subsets $F \subseteq E$ such that $d_F(v) \leq b(v)$ for all $v \in V$.
- Find all **minimal** subsets $F \subseteq E$ such that s and t are connected in (V, F) for all $(s, t) \in B$.
- Find all maximal subsets $F \subseteq E$ such that s and t are not connected for all $(s,t) \in B$.
- Find all **minimal** subsets $F \subseteq E$ such that U is within one connected component of (V, F).
- Find all **maximal** bipartite subgraphs of *G*.

うして ふゆう ふほう ふほう ふしつ

Typical Monotone Systems

- Find all maximal subsets $F \subseteq E$ such that $d_F(v) \leq b(v)$ for all $v \in V$.
- Find all **minimal** subsets $F \subseteq E$ such that s and t are connected in (V, F) for all $(s, t) \in B$.
- Find all maximal subsets $F \subseteq E$ such that s and t are not connected for all $(s,t) \in B$.
- Find all **minimal** subsets $F \subseteq E$ such that U is within one connected component of (V, F).
- Find all maximal bipartite subgraphs of G.

Typical Monotone Systems

- Find all maximal subsets $F \subseteq E$ such that $d_F(v) \leq b(v)$ for all $v \in V$.
- Find all **minimal** subsets $F \subseteq E$ such that s and t are connected in (V, F) for all $(s, t) \in B$.
- Find all maximal subsets $F \subseteq E$ such that s and t are not connected for all $(s,t) \in B$.
- Find all **minimal** subsets $F \subseteq E$ such that U is within one connected component of (V, F).
- Find all **maximal** bipartite subgraphs of *G*.

Typical Monotone Systems

- Find all maximal subsets $F \subseteq E$ such that $d_F(v) \leq b(v)$ for all $v \in V$.
- Find all **minimal** subsets $F \subseteq E$ such that s and t are connected in (V, F) for all $(s, t) \in B$.
- Find all maximal subsets $F \subseteq E$ such that s and t are not connected for all $(s,t) \in B$.
- Find all **minimal** subsets $F \subseteq E$ such that U is within one connected component of (V, F).
- Find all **maximal** bipartite subgraphs of *G*.

Efficient Generation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

Typical Monotone Systems

For a directed graph $D = (V, A), w \in \mathbb{R}^A$

- Find all minimal subsets $F \subseteq A$ such that (V, F) is strongly connected.
- Find all **maximal** subsets $F \subseteq A$ such that (V, F) is acyclic.
- Find all subsets $C \subseteq A$ such that C is a simple directed cycle and w(C) < 0.

Efficient Generation

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

Typical Monotone Systems

For a directed graph $D = (V, A), w \in \mathbb{R}^A$

- Find all **minimal** subsets $F \subseteq A$ such that (V, F) is strongly connected.
- Find all **maximal** subsets $F \subseteq A$ such that (V, F) is acyclic.
- Find all subsets $C \subseteq A$ such that C is a simple directed cycle and w(C) < 0.

うして ふゆう ふほう ふほう ふしつ

Typical Monotone Systems

For a directed graph $D = (V, A), w \in \mathbb{R}^A$

- Find all minimal subsets $F \subseteq A$ such that (V, F) is strongly connected.
- Find all **maximal** subsets $F \subseteq A$ such that (V, F) is acyclic.
- Find all subsets $C \subseteq A$ such that C is a simple directed cycle and w(C) < 0.

うして ふゆう ふほう ふほう ふしつ

Typical Monotone Systems

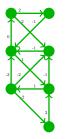
For a directed graph $D = (V, A), w \in \mathbb{R}^A$

- Find all minimal subsets $F \subseteq A$ such that (V, F) is strongly connected.
- Find all maximal subsets $F \subseteq A$ such that (V, F) is acyclic.
- Find all subsets $C \subseteq A$ such that C is a simple directed cycle and w(C) < 0. Whoops! NOT MONOTONE!

Hardness

Efficient Generation

Negative cycle free subgraphs' polyhedron



Let G = (V, E) be a directed graph, $w : E \to \mathbb{R}, x \in \mathbb{R}^V$, and consider the system of linear inequalities $\{x_i - x_j \le w_{ij} \ \forall \ (i, j) \in E\}$ Min't Infeasible Subsystems $\iff \{\mathbb{C} \subseteq E \mid \mathbb{C} \text{ is a negative cycle}\}$

Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyan, 2005)

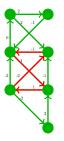
Given a directed graph G with real weights on its arcs, generating all negative cycles of G is **NP-hard**.

Corollary

Hardness

うして ふゆう ふほう ふほう ふしつ

Negative cycle free subgraphs' polyhedron



Let G = (V, E) be a directed graph, $w : E \to \mathbb{R}, x \in \mathbb{R}^V$, and consider the system of linear inequalities

 $\{x_i - x_j \le w_{ij} \ \forall \ (i,j) \in E\}$

 $Min'l Infeasible Subsystems \iff \{\mathbf{C} \subseteq E \mid \mathbf{C} \text{ is a negative cycle } \}$

Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyan, 2005)

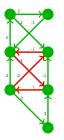
Given a directed graph G with real weights on its arcs, generating all negative cycles of G is **NP-hard**. Even if $w_{ij} \in \{\pm 1\}$ for all arcs $(i, j) \in E$.

Corollary

Hardness

うして ふゆう ふほう ふほう ふしつ

Negative cycle free subgraphs' polyhedron



Let G = (V, E) be a directed graph, $w : E \to \mathbb{R}, x \in \mathbb{R}^V$, and consider the system of linear inequalities

 $\{x_i - x_j \le w_{ij} \ \forall \ (i,j) \in E\}$

 $Min'l Infeasible Subsystems \iff \{\mathbf{C} \subseteq E \mid \mathbf{C} \text{ is a negative cycle } \}$

Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyan, 2005)

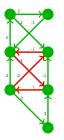
Given a directed graph G with real weights on its arcs, generating all negative cycles of G is **NP-hard**. Even if $w_{ij} \in \{\pm 1\}$ for all arcs $(i,j) \in E$.

Corollary

Hardness

うして ふゆう ふほう ふほう ふしつ

Negative cycle free subgraphs' polyhedron



Let G = (V, E) be a directed graph, $w : E \to \mathbb{R}, x \in \mathbb{R}^V$, and consider the system of linear inequalities

 $\{x_i - x_j \le w_{ij} \ \forall \ (i,j) \in E\}$

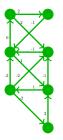
 $Min'l Infeasible Subsystems \iff \{\mathbf{C} \subseteq E \mid \mathbf{C} \text{ is a negative cycle } \}$

Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyan, 2005)

Given a directed graph G with real weights on its arcs, generating all negative cycles of G is **NP-hard**. Even if $w_{ij} \in \{\pm 1\}$ for all arcs $(i, j) \in E$.

Corollary

Negative cycle free subgraphs' polyhedron



Let G = (V, E) be a directed graph, $w : E \to \mathbb{R}, x \in \mathbb{R}^V$, and consider the system of linear inequalities

 $\{x_i - x_j \le w_{ij} \ \forall \ (i,j) \in E\}$

 $Min'l Infeasible Subsystems \iff \{\mathbf{C} \subseteq E \mid \mathbf{C} \text{ is a negative cycle } \}$

Theorem (Boros, Borys, Elbassioni, Gurvich and Khachiyan, 2005)

Given a directed graph G with real weights on its arcs, generating all negative cycles of G is **NP-hard**. Even if $w_{ij} \in \{\pm 1\}$ for all arcs $(i, j) \in E$.

Corollary

・ロト ・四ト ・ヨト ・ヨト

Recepte to prove Hardness of Generation

 $\mathcal{I}\subseteq 2^V$ is an independence system if $Y\subseteq X\in\mathcal{I}$ implies $Y\in\mathcal{I}$

Theorem (Lawler, Lenstra, and Rinnooy Kan, 1980)

If there is an algorithm generating the maximal independent sets of an arbitrary independence system represented by a **membership oracle** in incremental polynomial time, then P=NP.

Given a CNF $C_1 \wedge C_2 \wedge \cdots \wedge C_m$

- Set $V = \{X_1, X_2, \dots, X_n, X_n\}$
- and define $X \subseteq V$ independent if

Recepte to prove Hardness of Generation

 $\mathcal{I} \subseteq 2^V$ is an independence system if $Y \subseteq X \in \mathcal{I}$ implies $Y \in \mathcal{I}$

Theorem (Lawler, Lenstra, and Rinnooy Kan, 1980)

If there is an algorithm generating the maximal independent sets of an arbitrary independence system represented by a **membership oracle** in incremental polynomial time, then P=NP.

Given a CNF $C_1 \wedge C_2 \wedge \cdots \wedge C_m$

- Set $V = \{X_1, \overline{X}_1, \dots, X_n, \overline{X}_n\}$
- and define $X \subseteq V$ independent if

Recepte to prove Hardness of Generation

 $\mathcal{I}\subseteq 2^V$ is an independence system if $Y\subseteq X\in\mathcal{I}$ implies $Y\in\mathcal{I}$

Theorem (Lawler, Lenstra, and Rinnooy Kan, 1980)

If there is an algorithm generating the maximal independent sets of an arbitrary independence system represented by a **membership oracle** in incremental polynomial time, then P=NP.

Given a CNF $C_1 \wedge C_2 \wedge \cdots \wedge C_m$

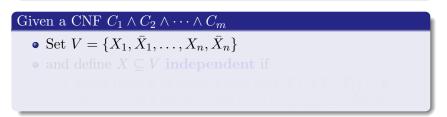
Set V = {X₁, X
₁,...,X_n, X
_n}
and define X ⊂ V independent if

Recepte to prove Hardness of Generation

 $\mathcal{I} \subseteq 2^V$ is an independence system if $Y \subseteq X \in \mathcal{I}$ implies $Y \in \mathcal{I}$

Theorem (Lawler, Lenstra, and Rinnooy Kan, 1980)

If there is an algorithm generating the maximal independent sets of an arbitrary independence system represented by a **membership oracle** in incremental polynomial time, then P=NP.



Recepte to prove Hardness of Generation

 $\mathcal{I}\subseteq 2^V$ is an independence system if $Y\subseteq X\in\mathcal{I}$ implies $Y\in\mathcal{I}$

Theorem (Lawler, Lenstra, and Rinnooy Kan, 1980)

If there is an algorithm generating the maximal independent sets of an arbitrary independence system represented by a **membership oracle** in incremental polynomial time, then P=NP.

Given a CNF $C_1 \wedge C_2 \wedge \cdots \wedge C_m$

- Set $V = \{X_1, \bar{X}_1, \dots, X_n, \bar{X}_n\}$
- and define $X \subseteq V$ **independent** if

either there is an index j such that X ∩ {X_j, X_j} = Ø
or X ∩ C_i ≠ Ø for all i, and |X ∩ {X_j, X_j}| ≤ 1 for all j.

Recepte to prove Hardness of Generation

 $\mathcal{I}\subseteq 2^V$ is an independence system if $Y\subseteq X\in\mathcal{I}$ implies $Y\in\mathcal{I}$

Theorem (Lawler, Lenstra, and Rinnooy Kan, 1980)

If there is an algorithm generating the maximal independent sets of an arbitrary independence system represented by a **membership oracle** in incremental polynomial time, then P=NP.

Given a CNF $C_1 \wedge C_2 \wedge \cdots \wedge C_m$

- Set $V = \{X_1, \bar{X}_1, \dots, X_n, \bar{X}_n\}$
- and define $X \subseteq V$ **independent** if
 - either there is an index j such that $X \cap \{X_j, \overline{X}_j\} = \emptyset$
 - or $X \cap C_i \neq \emptyset$ for all i, and $|X \cap \{X_j, X_j\}| \leq 1$ for all j.

Recepte to prove Hardness of Generation

 $\mathcal{I}\subseteq 2^V$ is an independence system if $Y\subseteq X\in\mathcal{I}$ implies $Y\in\mathcal{I}$

Theorem (Lawler, Lenstra, and Rinnooy Kan, 1980)

If there is an algorithm generating the maximal independent sets of an arbitrary independence system represented by a **membership oracle** in incremental polynomial time, then P=NP.

Given a CNF $C_1 \wedge C_2 \wedge \cdots \wedge C_m$

• Set
$$V = \{X_1, \bar{X}_1, \dots, X_n, \bar{X}_n\}$$

- and define $X \subseteq V$ **independent** if
 - either there is an index j such that $X \cap \{X_j, \overline{X}_j\} = \emptyset$
 - or $X \cap C_i \neq \emptyset$ for all i, and $|X \cap \{X_j, \overline{X}_j\}| \le 1$ for all j.

Monotone Generation

Efficient Generation

ション ふゆ マ キャット マックシン

Examples When Generation is Hard

- Maximal infeasible solutions to a system of monotone inequalities, B, Elbassioni, Gurvich, Khachiyan and Makino, 2002.
- Maximal frequent item sets, B, Gurvich, Khachiyan and Makino, 2002.

Monotone Generation

ション ふゆ マ キャット マックシン

Examples When Generation is Hard

- Maximal infeasible solutions to a system of monotone inequalities, B, Elbassioni, Gurvich, Khachiyan and Makino, 2002.
- Maximal frequent item sets, B, Gurvich, Khachiyan and Makino, 2002.

うして ふゆう ふほう ふほう ふしつ

Outline

1 Monotone Generation

- Definition of Problem
- Complexity of Generation
- Hardness of Generation
- Hypergraph dualization
- Typical Monotone Generation Problems

2 Hardness

3 Efficient Generation

\bullet Supergraphs

- Flashlight Principle
- Joint Generation
- Uniformly Dual Bounded Systems

Hardness

Efficient Generation

うして ふゆう ふほう ふほう ふしつ

Recepte for Efficient Generation: Finding the first set ...

Assume we want to generate $\mathcal{F} = \mathbf{Min}(\mathbf{II}) \subseteq 2^V$ where \mathbf{II} is a membership oracle for a monotone system.

- Set $V = \{v_1, v_2, ..., v_n\}$ and F = V. If $\Pi(F) = 0$ then STOP $(F = \emptyset)$.
- For i = 1, ..., n do: if $\Pi(F \setminus \{v_i\}) = 1$ then set $F = F \setminus \{v_i\}.$
- Output F.

Hardness

Efficient Generation

うして ふむ くまく ふせく しゃくしゃ

Recepte for Efficient Generation: Finding the first set ...

Assume we want to generate $\mathcal{F} = \mathbf{Min}(\mathbf{\Pi}) \subseteq 2^V$ where $\mathbf{\Pi}$ is a membership oracle for a monotone system.

- Set $V = \{v_1, v_2, ..., v_n\}$ and F = V. If $\Pi(F) = 0$ then STOP $(F = \emptyset)$.
- For i = 1, ..., n do: if $\Pi(F \setminus \{v_i\}) = 1$ then set $F = F \setminus \{v_i\}.$
- Output F.

Hardness

Efficient Generation

うして ふゆう ふほう ふほう ふしつ

Recepte for Efficient Generation: Finding the first set ...

Assume we want to generate $\mathcal{F} = \mathbf{Min}(\mathbf{II}) \subseteq 2^V$ where \mathbf{II} is a membership oracle for a monotone system.

- Set $V = \{v_1, v_2, ..., v_n\}$ and F = V. If $\Pi(F) = 0$ then STOP $(F = \emptyset)$.
- For i = 1, ..., n do: if $\Pi(F \setminus \{v_i\}) = 1$ then set $F = F \setminus \{v_i\}.$

• Output F.

Hardness

Efficient Generation

うつう 山田 エル・エー・ 山田 うらう

Recepte for Efficient Generation: Finding the first set ...

Assume we want to generate $\mathcal{F} = \mathbf{Min}(\mathbf{II}) \subseteq 2^V$ where \mathbf{II} is a membership oracle for a monotone system.

- Set $V = \{v_1, v_2, ..., v_n\}$ and F = V. If $\Pi(F) = 0$ then STOP $(F = \emptyset)$.
- For i = 1, ..., n do: if $\Pi(F \setminus \{v_i\}) = 1$ then set $F = F \setminus \{v_i\}.$
- Output F.

Recepte for Efficient Generation: Supergraphs

Define a directed graph D = (W, A) such that

- $W = \mathcal{F}$
- There is a subset $\mathcal{F}_0 \subseteq \mathcal{F}$ "easy to generate."
- For all $F \in W = \mathcal{F}$ the set $N^+(F) \subseteq W$ can be generated in incremental polynomial time.
- For all $F \in W \setminus \mathcal{F}_0$ there is an $\mathcal{F}_0 \to F$ path.

Theorem (Schwikowski and Speckenmeyer, 2002)

・ロト ・四ト ・ヨト ・ヨー うらう

Recepte for Efficient Generation: Supergraphs

Define a directed graph D = (W, A) such that

- $\bullet \ W = \mathcal{F}$
- There is a subset $\mathcal{F}_0 \subseteq \mathcal{F}$ "easy to generate."
- For all $F \in W = \mathcal{F}$ the set $N^+(F) \subseteq W$ can be generated in incremental polynomial time.
- For all $F \in W \setminus \mathcal{F}_0$ there is an $\mathcal{F}_0 \to F$ path.

Theorem (Schwikowski and Speckenmeyer, 2002)

Recepte for Efficient Generation: Supergraphs

Define a directed graph D = (W, A) such that

- $W = \mathcal{F}$
- There is a subset $\mathcal{F}_0 \subseteq \mathcal{F}$ "easy to generate."
- For all $F \in W = \mathcal{F}$ the set $N^+(F) \subseteq W$ can be generated in incremental polynomial time.
- For all $F \in W \setminus \mathcal{F}_0$ there is an $\mathcal{F}_0 \to F$ path.

Theorem (Schwikowski and Speckenmeyer, 2002)

Recepte for Efficient Generation: Supergraphs

Define a directed graph D = (W, A) such that

- $W = \mathcal{F}$
- There is a subset $\mathcal{F}_0 \subseteq \mathcal{F}$ "easy to generate."
- For all $F \in W = \mathcal{F}$ the set $N^+(F) \subseteq W$ can be generated in incremental polynomial time.
- For all $F \in W \setminus \mathcal{F}_0$ there is an $\mathcal{F}_0 \to F$ path.

Theorem (Schwikowski and Speckenmeyer, 2002)

Recepte for Efficient Generation: Supergraphs

Define a directed graph D = (W, A) such that

- $W = \mathcal{F}$
- There is a subset $\mathcal{F}_0 \subseteq \mathcal{F}$ "easy to generate."
- For all $F \in W = \mathcal{F}$ the set $N^+(F) \subseteq W$ can be generated in incremental polynomial time.
- For all $F \in W \setminus \mathcal{F}_0$ there is an $\mathcal{F}_0 \to F$ path.

Theorem (Schwikowski and Speckenmeyer, 2002)

Monotone Generation 000000000000

うして ふゆう ふほう ふほう ふしつ

- Minimal feedback arc-sets in directed graphs (Swikowski and Speckenmeyer, 2002)
- Minimal cut conjunctions in graphs (B, Borys, Elbassioni, Gurvich, Khachiyan, and Makino, 2006)
- Prefect 2-matchings (B, Elbassioni, and Gurvich, 2006)
- Minimal edge-dominating sets (Golovach, Heggernes, Kratsch, and Villager, 2012)

Monotone Generation 000000000000

うして ふゆう ふほう ふほう ふしつ

- Minimal feedback arc-sets in directed graphs (Swikowski and Speckenmeyer, 2002)
- Minimal cut conjunctions in graphs (B, Borys, Elbassioni, Gurvich, Khachiyan, and Makino, 2006)
- Prefect 2-matchings (B, Elbassioni, and Gurvich, 2006)
- Minimal edge-dominating sets (Golovach, Heggernes, Kratsch, and Villager, 2012)

Monotone Generation 000000000000

ション ふゆ マ キャット マックシン

- Minimal feedback arc-sets in directed graphs (Swikowski and Speckenmeyer, 2002)
- Minimal cut conjunctions in graphs (B, Borys, Elbassioni, Gurvich, Khachiyan, and Makino, 2006)
- Prefect 2-matchings (B, Elbassioni, and Gurvich, 2006)
- Minimal edge-dominating sets (Golovach, Heggernes, Kratsch, and Villager, 2012)

Monotone Generation 000000000000

ション ふゆ マ キャット マックシン

- Minimal feedback arc-sets in directed graphs (Swikowski and Speckenmeyer, 2002)
- Minimal cut conjunctions in graphs (B, Borys, Elbassioni, Gurvich, Khachiyan, and Makino, 2006)
- Prefect 2-matchings (B, Elbassioni, and Gurvich, 2006)
- Minimal edge-dominating sets (Golovach, Heggernes, Kratsch, and Villager, 2012)

うして ふゆう ふほう ふほう ふしつ

Outline

1 Monotone Generation

- Definition of Problem
- Complexity of Generation
- Hardness of Generation
- Hypergraph dualization
- Typical Monotone Generation Problems

2 Hardness

3 Efficient Generation

• Supergraphs

• Flashlight Principle

- Joint Generation
- Uniformly Dual Bounded Systems

Special Cases of Supergraphs: Flashlight Principle

Assume that for all $X, Y \subseteq V, X \cap Y = \emptyset$ we can test in polynomial time if there exists a set $F \in \mathcal{F}$ such that $Y \subseteq F$ and $X \cap F = \emptyset$.

Theorem

Then \mathcal{F} can be generated with polynomial delay.

- Bridges of graphs, Tarjan, 1974
- Paths, cuts in graphs, Read and Tarjan, 1975

• ...

- Reverse search, Avis and Fukuda, 1993.
- Blockers of perfect matchings, B, Elbassioni, and Gurvich, 2006.

Special Cases of Supergraphs: Flashlight Principle

Assume that for all $X, Y \subseteq V, X \cap Y = \emptyset$ we can test in polynomial time if there exists a set $F \in \mathcal{F}$ such that $Y \subseteq F$ and $X \cap F = \emptyset$.

Theorem

Then \mathcal{F} can be generated with polynomial delay.

- Bridges of graphs, Tarjan, 1974
- Paths, cuts in graphs, Read and Tarjan, 1975
- ...
- Reverse search, Avis and Fukuda, 1993.
- Blockers of perfect matchings, B, Elbassioni, and Gurvich, 2006.

Special Cases of Supergraphs: Flashlight Principle

Assume that for all $X, Y \subseteq V, X \cap Y = \emptyset$ we can test in polynomial time if there exists a set $F \in \mathcal{F}$ such that $Y \subseteq F$ and $X \cap F = \emptyset$.

Theorem

Then \mathcal{F} can be generated with polynomial delay.

• Bridges of graphs, Tarjan, 1974

• Paths, cuts in graphs, Read and Tarjan, 1975

• ...

- Reverse search, Avis and Fukuda, 1993.
- Blockers of perfect matchings, B, Elbassioni, and Gurvich, 2006.

Special Cases of Supergraphs: Flashlight Principle

Assume that for all $X, Y \subseteq V, X \cap Y = \emptyset$ we can test in polynomial time if there exists a set $F \in \mathcal{F}$ such that $Y \subseteq F$ and $X \cap F = \emptyset$.

Theorem

Then \mathcal{F} can be generated with polynomial delay.

- Bridges of graphs, Tarjan, 1974
- Paths, cuts in graphs, Read and Tarjan, 1975
- ...
- Reverse search, Avis and Fukuda, 1993.
- Blockers of perfect matchings, B, Elbassioni, and Gurvich, 2006.

Special Cases of Supergraphs: Flashlight Principle

Assume that for all $X, Y \subseteq V, X \cap Y = \emptyset$ we can test in polynomial time if there exists a set $F \in \mathcal{F}$ such that $Y \subseteq F$ and $X \cap F = \emptyset$.

Theorem

Then \mathcal{F} can be generated with polynomial delay.

- Bridges of graphs, Tarjan, 1974
- Paths, cuts in graphs, Read and Tarjan, 1975
- ...
- Reverse search, Avis and Fukuda, 1993.
- Blockers of perfect matchings, B, Elbassioni, and Gurvich, 2006.

うして ふゆう ふほう ふほう ふしつ

Special Cases of Supergraphs: Flashlight Principle

Assume that for all $X, Y \subseteq V, X \cap Y = \emptyset$ we can test in polynomial time if there exists a set $F \in \mathcal{F}$ such that $Y \subseteq F$ and $X \cap F = \emptyset$.

Theorem

Then \mathcal{F} can be generated with polynomial delay.

- Bridges of graphs, Tarjan, 1974
- Paths, cuts in graphs, Read and Tarjan, 1975
- ...
- Reverse search, Avis and Fukuda, 1993.
- Blockers of perfect matchings, B, Elbassioni, and Gurvich, 2006.

Special Cases of Supergraphs: Flashlight Principle

Assume that for all $X, Y \subseteq V, X \cap Y = \emptyset$ we can test in polynomial time if there exists a set $F \in \mathcal{F}$ such that $Y \subseteq F$ and $X \cap F = \emptyset$.

Theorem

Then \mathcal{F} can be generated with polynomial delay.

- Bridges of graphs, Tarjan, 1974
- Paths, cuts in graphs, Read and Tarjan, 1975
- ...
- Reverse search, Avis and Fukuda, 1993.
- Blockers of perfect matchings, B, Elbassioni, and Gurvich, 2006.

うして ふゆう ふほう ふほう ふしつ

Outline

1 Monotone Generation

- Definition of Problem
- Complexity of Generation
- Hardness of Generation
- Hypergraph dualization
- Typical Monotone Generation Problems

2 Hardness

3 Efficient Generation

- Supergraphs
- Flashlight Principle

• Joint Generation

• Uniformly Dual Bounded Systems

うして ふゆう ふほう ふほう ふしつ

Recepte for Efficient Generation: Joint Generation

Theorem (Gurvich and Khachiyan, 1999)

Given the membership oracle Π for a monotone property over the finite set V, $\mathcal{H} = \mathbf{Min}(\Pi)$, then the family $\mathcal{H} \cup \mathcal{H}^d$ can be generated in incremental quasi-polynomial time.

Corollary

If $|\mathcal{H}^d| \leq poly(|\mathcal{H}|, |V|, |\Pi|)$, then \mathcal{H} can be generated in quasi-polynomial total time.

うして ふゆう ふほう ふほう ふしつ

Recepte for Efficient Generation: Joint Generation

Theorem (Gurvich and Khachiyan, 1999)

Given the membership oracle Π for a monotone property over the finite set V, $\mathcal{H} = \mathbf{Min}(\Pi)$, then the family $\mathcal{H} \cup \mathcal{H}^d$ can be generated in incremental quasi-polynomial time.

Corollary

If $|\mathcal{H}^d| \leq poly(|\mathcal{H}|, |V|, |\Pi|)$, then \mathcal{H} can be generated in quasi-polynomial total time.

うして ふゆう ふほう ふほう ふしつ

Outline

1 Monotone Generation

- Definition of Problem
- Complexity of Generation
- Hardness of Generation
- Hypergraph dualization
- Typical Monotone Generation Problems

2 Hardness

3 Efficient Generation

- Supergraphs
- Flashlight Principle
- Joint Generation
- Uniformly Dual Bounded Systems

うして ふゆう ふほう ふほう ふしつ

Recepie for Efficient Generation: Dual Boundedness

$\mathcal{H} \subseteq 2^V$ is uniformly dual bounded if for all $\mathcal{F} \subseteq \mathcal{H}$ we have

$|\mathcal{F}^d \cap \mathcal{H}^d| \le poly(|\mathcal{F}|, |V|, |\Pi|).$

Theorem (B, Gurvich, Khachiyan and Makino, 2000)

If \mathcal{H} is uniformly dual bounded, then it can be generated in incremental quasi-polynomial time.

うして ふゆう ふほう ふほう ふしつ

Recepie for Efficient Generation: Dual Boundedness

 $\mathcal{H} \subseteq 2^V$ is uniformly dual bounded if for all $\mathcal{F} \subseteq \mathcal{H}$ we have

$$|\mathcal{F}^d \cap \mathcal{H}^d| \le poly(|\mathcal{F}|, |V|, |\Pi|).$$

Theorem (B, Gurvich, Khachiyan and Makino, 2000)

If \mathcal{H} is uniformly dual bounded, then it can be generated in incremental quasi-polynomial time.

Monotone Generation 000000000000

うして ふゆう ふほう ふほう ふしつ

- Partial and multiple transversals to hypergarphs, B, Gurvich, Khachiyan and Makino, 2000.
- Maximal sets independent in *m* matroids over the same base, B, Elbassioni, Gurvich, and Khachiyan, 2002.
- Disjunction of sparse boxes in *m* databases, B, Elbassioni, Gurvich, and Khachiyan, 2002.
- Minimal edges sets that make each of V_i , i = 1, ...m connected, B, Elbassioni, Gurvich and Khachiyan, 2002.
- Minimal collections of events the union of which have a probability exceeding a threshold, B, Elbassioni, Gurvich, and Khachiyan, 2002.
- Minimal feasible solutions to a system of monotone linear inequalities in binary variables, B. Elbassioni, Gurvich, Khachiyan and Makino, 2002.

Monotone Generation

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

- Partial and multiple transversals to hypergarphs, B, Gurvich, Khachiyan and Makino, 2000.
- Maximal sets independent in *m* matroids over the same base, B, Elbassioni, Gurvich, and Khachiyan, 2002.
- Disjunction of sparse boxes in *m* databases, B, Elbassioni, Gurvich, and Khachiyan, 2002.
- Minimal edges sets that make each of V_i , i = 1, ...m connected, B, Elbassioni, Gurvich and Khachiyan, 2002.
- Minimal collections of events the union of which have a probability exceeding a threshold, B, Elbassioni, Gurvich, and Khachiyan, 2002.
- Minimal feasible solutions to a system of monotone linear inequalities in binary variables, B. Elbassioni, Gurvich, Khachiyan and Makino, 2002.

Monotone Generation 000000000000

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

- Partial and multiple transversals to hypergarphs, B, Gurvich, Khachiyan and Makino, 2000.
- Maximal sets independent in *m* matroids over the same base, B, Elbassioni, Gurvich, and Khachiyan, 2002.
- Disjunction of sparse boxes in *m* databases, B, Elbassioni, Gurvich, and Khachiyan, 2002.
- Minimal edges sets that make each of V_i , i = 1, ...m connected, B, Elbassioni, Gurvich and Khachiyan, 2002.
- Minimal collections of events the union of which have a probability exceeding a threshold, B, Elbassioni, Gurvich, and Khachiyan, 2002.
- Minimal feasible solutions to a system of monotone linear inequalities in binary variables, B. Elbassioni, Gurvich, Khachiyan and Makino, 2002.

Monotone Generation

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

- Partial and multiple transversals to hypergarphs, B, Gurvich, Khachiyan and Makino, 2000.
- Maximal sets independent in *m* matroids over the same base, B, Elbassioni, Gurvich, and Khachiyan, 2002.
- Disjunction of sparse boxes in *m* databases, B, Elbassioni, Gurvich, and Khachiyan, 2002.
- Minimal edges sets that make each of V_i , i = 1, ...m connected, B, Elbassioni, Gurvich and Khachiyan, 2002.
- Minimal collections of events the union of which have a probability exceeding a threshold, B, Elbassioni, Gurvich, and Khachiyan, 2002.
- Minimal feasible solutions to a system of monotone linear inequalities in binary variables, B. Elbassioni, Gurvich, Khachiyan and Makino, 2002.

Monotone Generation

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

- Partial and multiple transversals to hypergarphs, B, Gurvich, Khachiyan and Makino, 2000.
- Maximal sets independent in *m* matroids over the same base, B, Elbassioni, Gurvich, and Khachiyan, 2002.
- Disjunction of sparse boxes in *m* databases, B, Elbassioni, Gurvich, and Khachiyan, 2002.
- Minimal edges sets that make each of V_i , i = 1, ...m connected, B, Elbassioni, Gurvich and Khachiyan, 2002.
- Minimal collections of events the union of which have a probability exceeding a threshold, B, Elbassioni, Gurvich, and Khachiyan, 2002.
- Minimal feasible solutions to a system of monotone linear inequalities in binary variables, B. Elbassioni, Gurvich, Khachiyan and Makino, 2002.

Monotone Generation

- Partial and multiple transversals to hypergarphs, B, Gurvich, Khachiyan and Makino, 2000.
- Maximal sets independent in *m* matroids over the same base, B, Elbassioni, Gurvich, and Khachiyan, 2002.
- Disjunction of sparse boxes in *m* databases, B, Elbassioni, Gurvich, and Khachiyan, 2002.
- Minimal edges sets that make each of V_i , i = 1, ...m connected, B, Elbassioni, Gurvich and Khachiyan, 2002.
- Minimal collections of events the union of which have a probability exceeding a threshold, B, Elbassioni, Gurvich, and Khachiyan, 2002.
- Minimal feasible solutions to a system of monotone linear inequalities in binary variables, B. Elbassioni, Gurvich, Khachiyan and Makino, 2002.

ション ふゆ マ キャット マックシン

Recepie for Efficient Generation: Dual Boundedness

Theorem (B, Elbassioni, Gurvich, Khachiyan, and Makino, 2005)

Almost all monotone systems are uniformly dual bounded!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Monotone Generation

Hardness

Congratulations to the Organizing Committee!!!

- Nastja Cepak
- Nina Chiarelli
- Tatiana Romina Hartinger

- Marcin Kamiński
- Martin Milanič